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Performance analysis

● Why do we parallelize our programs?
– So that they run faster!



  

Performance analysis

● How do we evaluate whether we've done a 
good job in parallelizing a program?
– Asymptotic analysis (e.g., for distributed sum)
– Empirical analysis



  

Empirical analysis issues

● How do you measure time-to-solution accurately?
– CPU cycles, OS clock "ticks", wall time, etc.

● How do you compare across systems?
– Differing CPUs, memories, OSes, etc.

● How do you compare against the original?
– 1-core parallel version will likely be slower

● How do you assess scalability?
– Does performance improve as you add cores?
– How do you quantify the improvement?
– Is there a limit to how far we can improve performance?



  

Best practices

● Measure wall time for specific code regions of interest
– Ignore startup and I/O time if not relevant
– Make sure you have a high-resolution timer!

● /usr/bin/time -v for whole programs
● gettimeofday() from sys/time.h for Pthreads
● omp_get_wtime() for OpenMP
● MPI_Wtime() for MPI

– Use barriers if necessary to make sure all 
threads/processes have finished before you stop a timer



  

Best practices

● Control for variance
– Do all experiments on the same machine or cluster
– Maximum of one thread per core and one job per node

● Our cluster can support 16 threads per node (or 32 if hyper-threading, 
but this is not always recommended)

– Run multiple trials and use minimum time
● Minimizes impact of OS interference or noise
● Alternative: run a few “warmup” trials before “real” trials
● Use /shared/cs470/bin/hyperfine on cluster for whole programs

– Measure variance across trials
● If your variance is high or if your slowest and fastest time are relatively 

far apart (as a percentage of the slower time), it's probably noise!

https://github.com/sharkdp/hyperfine


  

Best practices [Hoefler 2015]

● Rule 1: Report if the base case is a single parallel 
process or best serial execution, as well as the absolute 
execution performance

● Rule 2: Specify the reason for reporting subsets of 
applications or not using all system resources

● Rule 9: Document all varying factors as well as the 
complete experimental setup to facilitate reproducibility

● Rule 12: Plot as much information as needed to 
interpret the results – only connect measurements by 
lines if they indicate trends and the interpolation is valid

Torsten Hoefler and Roberto Belli. 2015. Scientific benchmarking of parallel computing systems: twelve ways to tell the masses when reporting 
performance results. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC 

'15). Association for Computing Machinery, New York, NY, USA, Article 73, 1–12. DOI:https://doi.org/10.1145/2807591.2807644



  

Empirical analysis
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Amdahl's Law

r = serial % of program
S = speedup =
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p = # of processors

r = 10% → speedup limited to 10x

r = 5%   → speedup limited to 20x

r = 25% → speedup limited to 4x

r = 50% → speedup limited to 2x

Speedup limited inversely 
proportionally by serial %



  

Scaling

● Generally, we don't care about any particular T
P

– Or with how it compares to TS (except as a sanity check)

● More important: how T
P
 , S, and E change as p increases

– And/or as the problem size increases
– Similar to asymptotic analysis in CS 240
– In general, a program is scalable if E remains fixed as p and the 

problem size increase at fixed rates

– Most common: graph TP on y-axis vs. p on logarithmic x-axis
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Scaling

● Strong scaling means we can keep the efficiency 
fixed without increasing the problem size

● Weak scaling means we can keep the efficiency 
fixed by increasing the problem size at the same rate 
as the process/thread count
– Rate of work (e.g., Mop/s) per core remains roughly fixed
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Scaling

● Strong scaling: as p increases, TP decreases

– Linear speedup: same rate of change (2x procs → half time)
– Sublinear (most common) / superlinear (exceedingly rare) speedup
– Be careful to interpret linear vs. logarithmic axes correctly

● Weak scaling: as p increases AND the problem size increases 
proportionally, TP stays roughly the same
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Scaling

● What do the following results exhibit?
– A) No scaling
– B) Strong scaling only
– C) Weak scaling only
– D) Both strong and weak scaling
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Job management

● Slurm is system software outside the OS (a.k.a. 
middleware) that handles job submission and scheduling 
on our cluster

● An interactive job takes control of your terminal
– Run with srun or salloc
– You may interact with it (provide standard input, etc.)
– You also have to wait for it to finish
– Similar to a foreground shell job

● A batch job runs in the background without interaction
– Create a shell script and run it with sbatch
– Sends output to a file (named “slurm-JOBID.out” by default)
– Use squeue to check to see if it has finished



  

Batch jobs

● To run a batch job on the cluster, create a shell script 
and run it with sbatch

● Bash example:

#!/bin/bash
#
#SBATCH --job-name=hostname
#SBATCH --nodes=1
#SBATCH --ntasks=1

<your commands go here>



  

Running experiments

● Common experimentation patterns in Bash:

# run 5 times
for i in $(seq 1 5); do
    <cmd>
done

# run common thread counts
for t in 1 2 4 8 16; do
    OMP_NUM_THREADS=$t <cmd>
done



  

Running experiments

● For MPI, use a templated run script to launch multiple jobs 
with different numbers of MPI tasks

#!/bin/bash
#SBATCH –job-name=<cmd>-MPI_NUM_TASKS
#SBATCH --output=<cmd>-MPI_NUM_TASKS.txt
#SBATCH --ntasks=MPI_NUM_TASKS

module load mpi
srun -n MPI_NUM_TASKS <cmd>

#!/bin/bash
for n in 1 8 16 32 64 128; do
    sed -e "s/MPI_NUM_TASKS/$n/g" run.sh | sbatch
done

#!/bin/bash
for n in 1 8 16 32 64 128; do
    echo "== $n processes =="
    cat <cmd>-$n.txt
    echo
done

run.sh

launch.sh

view.sh



  

Note re: sbatch and zsh

● If you use zsh instead of bash and want to write 
batch scripts, you may also need this line 
before “module load mpi”:
– source /usr/share/Modules/init/zsh
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