

CS 470
Spring 2024

Mike Lam, Professor

Performance Analysis

Flame graph from brendangregg.com

Performance analysis

● Why do we parallelize our programs?
– So that they run faster!

Performance analysis

● How do we evaluate whether we've done a
good job in parallelizing a program?
– Asymptotic analysis (e.g., for distributed sum)
– Empirical analysis

Empirical analysis issues

● How do you measure time-to-solution accurately?
– CPU cycles, OS clock "ticks", wall time, etc.

● How do you compare across systems?
– Differing CPUs, memories, OSes, etc.

● How do you compare against the original?
– 1-core parallel version will likely be slower

● How do you assess scalability?
– Does performance improve as you add cores?
– How do you quantify the improvement?
– Is there a limit to how far we can improve performance?

Best practices

● Measure wall time for specific code regions of interest
– Ignore startup and I/O time if not relevant
– Make sure you have a high-resolution timer!

● /usr/bin/time -v for whole programs
● gettimeofday() from sys/time.h for Pthreads
● omp_get_wtime() for OpenMP
● MPI_Wtime() for MPI

– Use barriers if necessary to make sure all
threads/processes have finished before you stop a timer

Best practices

● Control for variance
– Do all experiments on the same machine or cluster
– Maximum of one thread per core and one job per node

● Our cluster can support 16 threads per node (or 32 if hyper-threading,
but this is not always recommended)

– Run multiple trials and use minimum time
● Minimizes impact of OS interference or noise
● Alternative: run a few “warmup” trials before “real” trials
● Use /shared/cs470/bin/hyperfine on cluster for whole programs

– Measure variance across trials
● If your variance is high or if your slowest and fastest time are relatively

far apart (as a percentage of the slower time), it's probably noise!

https://github.com/sharkdp/hyperfine

Best practices [Hoefler 2015]

● Rule 1: Report if the base case is a single parallel
process or best serial execution, as well as the absolute
execution performance

● Rule 2: Specify the reason for reporting subsets of
applications or not using all system resources

● Rule 9: Document all varying factors as well as the
complete experimental setup to facilitate reproducibility

● Rule 12: Plot as much information as needed to
interpret the results – only connect measurements by
lines if they indicate trends and the interpolation is valid

Torsten Hoefler and Roberto Belli. 2015. Scientific benchmarking of parallel computing systems: twelve ways to tell the masses when reporting
performance results. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC

'15). Association for Computing Machinery, New York, NY, USA, Article 73, 1–12. DOI:https://doi.org/10.1145/2807591.2807644

Empirical analysis

T
s
 = serial time

T
P
 = parallel time

S = speedup =

p = # of processes

T S

T P

E = efficiency = =
S
p

T S

pTP

r = serial % of original program

S = speedup =
T S

(1−r)T S

p
+ r T S

T
P
 =

(1−r)T S

p
+ r T S

should
increase

as p grows

usually
decreases
as p grows

Amdahl's Law: S ≤ as p increases
1
r

parallel portion serial portion

Amdahl's Law

r = serial % of program
S = speedup =

T S

(1−r)T S

p
+ r T S

Amdahl's Law:

S ≤ as p increases1
r

p = # of processors

r = 10% → speedup limited to 10x

r = 5% → speedup limited to 20x

r = 25% → speedup limited to 4x

r = 50% → speedup limited to 2x

Speedup limited inversely
proportionally by serial %

Scaling

● Generally, we don't care about any particular T
P

– Or with how it compares to TS (except as a sanity check)

● More important: how T
P
 , S, and E change as p increases

– And/or as the problem size increases
– Similar to asymptotic analysis in CS 240
– In general, a program is scalable if E remains fixed as p and the

problem size increase at fixed rates

– Most common: graph TP on y-axis vs. p on logarithmic x-axis

T
P

p

T
P

p

bad!good!

Scaling

● Strong scaling means we can keep the efficiency
fixed without increasing the problem size

● Weak scaling means we can keep the efficiency
fixed by increasing the problem size at the same rate
as the process/thread count
– Rate of work (e.g., Mop/s) per core remains roughly fixed

E = efficiency = =
S
p

T S

pTP

usually
decreases
as p grows

Scaling

● Strong scaling: as p increases, TP decreases

– Linear speedup: same rate of change (2x procs → half time)
– Sublinear (most common) / superlinear (exceedingly rare) speedup
– Be careful to interpret linear vs. logarithmic axes correctly

● Weak scaling: as p increases AND the problem size increases
proportionally, TP stays roughly the same

T
P

p (log)

T
P

p and p_size (log)

Strong
scaling

Weak
scaling

bad
bad

good
good

Scaling

● What do the following results exhibit?
– A) No scaling
– B) Strong scaling only
– C) Weak scaling only
– D) Both strong and weak scaling

Scaling

● What do the following results exhibit?
– A) No scaling
– B) Strong scaling only
– C) Weak scaling only
– D) Both strong and weak scaling

Scaling

● What do the following results exhibit?
– A) No scaling
– B) Strong scaling only
– C) Weak scaling only
– D) Both strong and weak scaling

Job management

● Slurm is system software outside the OS (a.k.a.
middleware) that handles job submission and scheduling
on our cluster

● An interactive job takes control of your terminal
– Run with srun or salloc
– You may interact with it (provide standard input, etc.)
– You also have to wait for it to finish
– Similar to a foreground shell job

● A batch job runs in the background without interaction
– Create a shell script and run it with sbatch
– Sends output to a file (named “slurm-JOBID.out” by default)
– Use squeue to check to see if it has finished

Batch jobs

● To run a batch job on the cluster, create a shell script
and run it with sbatch

● Bash example:

#!/bin/bash
#
#SBATCH --job-name=hostname
#SBATCH --nodes=1
#SBATCH --ntasks=1

<your commands go here>

Running experiments

● Common experimentation patterns in Bash:

run 5 times
for i in $(seq 1 5); do
 <cmd>
done

run common thread counts
for t in 1 2 4 8 16; do
 OMP_NUM_THREADS=$t <cmd>
done

Running experiments

● For MPI, use a templated run script to launch multiple jobs
with different numbers of MPI tasks

#!/bin/bash
#SBATCH –job-name=<cmd>-MPI_NUM_TASKS
#SBATCH --output=<cmd>-MPI_NUM_TASKS.txt
#SBATCH --ntasks=MPI_NUM_TASKS

module load mpi
srun -n MPI_NUM_TASKS <cmd>

#!/bin/bash
for n in 1 8 16 32 64 128; do
 sed -e "s/MPI_NUM_TASKS/$n/g" run.sh | sbatch
done

#!/bin/bash
for n in 1 8 16 32 64 128; do
 echo "== $n processes =="
 cat <cmd>-$n.txt
 echo
done

run.sh

launch.sh

view.sh

Note re: sbatch and zsh

● If you use zsh instead of bash and want to write
batch scripts, you may also need this line
before “module load mpi”:
– source /usr/share/Modules/init/zsh

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

