

CS 432
Fall 2025

Mike Lam, Professor

Optimization

https://openclipart.org/detail/291407/performance

Compilers

int main() {
 int x
 = 4 + 5;
 return x;
}

Source code Tokens Syntax tree
Checked AST
+ Symtables

Lexing
(P2)

Parsing
(P3)

Analysis
(P4)

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

✓

✓ ✓

✓ ✓

main:
 loadI 4 => r1
 loadI 5 => r2
 add r1, r2 => r3
 i2i r3 => RET

Linear IR

main:
 loadI 4 => r1
 addI r1, 5 => RET

Optimized
Linear IR

IR Code Gen
(P5)

Optimization
Passes

Machine
Code Gen

Current
focus

Optimization is Hard

● Problem: it's hard to reason about all possible executions

– Preconditions and inputs may differ

– Optimizations should be correct and efficient in all cases

● Optimization tradeoff: investment vs. payoff

– "Better than naïve" is fairly easy

– "Optimal" is impossible

– Real world: somewhere in between
● Better speedups with more static analysis
● Usually worth the added compile time
● Requires working at multiple levels of granularity
● Many active areas of research

Optimization (Ch. 8-11)

● Local

– Local value numbering (8.4.1)

– Tree-height balancing (8.4.2)

– Peephole optimization (11.5)

● Regional

– Superlocal value numbering (8.5.1)

– Loop unrolling (8.5.2)

● Global

– Constant propagation (9.3.6, 10.7.1)

– Dead code elimination (10.2)

– Global code placement (8.6.2)

– Lazy code motion (10.3)

● Whole-program

– Inline substitution (8.7.1)

– Procedure placement (8.7.2)

Asides:
Data-flow analysis (Ch. 9)
Liveness analysis (8.5.1, 9.2.2)
Single static assignment (9.3)

Local Value Numbering

● Detect and remove redundant computation
– Assign distinct numbers to each value computed

● Typically using a hashing scheme

– Requires SSA (or some similar scheme)
● Avoids removing incorrect “redundancies”

a = x
b = y
c = a + b;
d = a + b;
a = z;
e = a + b;

Original

a = x
b = y
c = a + b;
d = c; // same number as c (a0 + b)
a = z;
e = a + b; // NOT the same number as c (a1 + b)

Optimized

Tree-Height Balancing

● Balance expression trees
– Improves performance for CPUs with pipelining and/or

multiple functional units (i.e., instruction-level
parallelism)

Peephole Optimization

● Scan linear IR with sliding window ("peephole")
– Look for common inefficient patterns

– Replace with known equivalent sequences

storeAI r5 => [bp+8]
loadAI [bp+8] => r7

storeAI r5 => [bp+8]
i2i r5 => r7

storeAI a => b
loadAI b => c

storeAI a => b
i2i a => c

Example:

Generalized pattern:

Loop Unrolling

● Replace loop body with multiple copies
– Reduces number of comparisons and nonlocal jumps
– Exposes additional opportunities for other

optimizations

for (int i=0; i<N; i++) {
 do_something(i);
}

int i;
for (i=0; i<N-4; i+=4) {
 do_something(i);
 do_something(i+1);
 do_something(i+2);
 do_something(i+3);
}
for (; i<N; i++) {
 do_something(i);
}

Original

Unrolled by factor of 4

Profile: “Fran” Allen

● Frances Allen (b. 1932, d. 2020)

– B.S. and M.S. in Mathematics

– Worked at IBM, NYU, Stanford among others

– First female IBM Fellow

– First female ACM Turing Award recipient

– Many foundational papers on optimizations and
data flow analysis

Photo courtesy of Wikipedia

Profile: Frances “Fran” Allen

https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf

Dead Code Elimination

● Remove non-live definitions
– Requires liveness analysis

int x = a + b; // original
int y = a - b;
return x + 2;

int x = a + b; // reduced code size
return x + 2;

Global Code Placement

● Arrange basic blocks in order according to likely
control flow at run time (hot path)
– Takes advantage of code locality (lower cost of fallthrough

vs. taken branches)

– Requires profiling information

– Build chains of hot paths

Hot path chains: (B0, B2, B3)100, (B1)1

Lazy Code Motion

● Move loop-invariant expressions out of loops
– Combines three different dataflow analyses

// original

for (int i=0; i<nblocks; i++) {
 a = sqrt(cos(b)+sin(b));
 printf("%f\n", calc_something(a+(float)i));
}

// optimized

a = sqrt(cos(b)+sin(b));
for (int i=0; i<nblocks; i++) {
 printf("%f\n", calc_something(a+(float)i));
}

Tail Recursion Elimination

● Some recursive procedures can be converted to iterative
procedures automatically

– Avoids the overhead of multiple calls

// original

int fact(int n) {
 if (n < 2) return 1;
 return n * fact(n - 1);
}

// tail-recursive version

int fact(int n) {
 return fac_rec(1, n);
}
int fact_rec(int acc, int n) {
 if (n < 2) return acc;
 return fac_rec(n * acc, n - 1);
}

// removed tail recursion

int fact_rec(int acc, int n) {
loop:
 if (n < 2) return acc;
 acc *= n;
 n--;
 goto loop;
}

// inlined and condition-inverted

int fact(int n) {
 int acc = 1;
 while (n > 1) {
 acc *= n;
 n--;
 }
 return acc;
}

Inline Substitution

● Replace procedure call with callee’s body

– Avoids call overhead and exposes additional opportunities for
other optimizations

– Decision procedure to choose when to inline
● Many potential criteria (callee/caller size, call count, etc.)

int foo(int x, int y) {
 return x + bar(y);
}
int main() {
 a = foo(1,2);
 b = foo(3,4);
 c = foo(5,6);
 return a + b + c;
}

int main() {
 a = 1 + bar(2);
 b = 3 + bar(4);
 c = 5 + bar(6);
 return a + b + c;
}

Original Inlined foo into main

Procedure Placement

● Extension of global code placement to
procedures
– Uses call graph instead of control flow graph

...

Link-Time Optimization

● Most compilers focus on a portion of the program at a time
– Called a compilation unit (often a single file, class, or

procedure)
– Provides straightforward parallelization
– Obstructs whole-program optimizations
– Link-time optimization looks at the entire program

Compiler Research

● Larger compilation units

– What is the right balance?

● Smaller passes (e.g., nanopasses)

– Allows for easy re-runs of passes

● Gradual typing: hybrid static & dynamic type checking

– Some variables are annotated and checked statically

– Others are checked at runtime

● Incremental compilation: cache IRs for future compilation

– Improves re-compilation performance

● Integrated development environments (IDEs)

– Greater collaboration w/ developer

– Combination of systems and human-computer interaction (HCI)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

