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I Optimization Is Hard

* Problem: it's hard to reason about all possible executions

— Preconditions and inputs may differ
— Optimizations should be correct and efficient in all cases

* Optimization tradeoff: investment vs. payoff

"Better than naive" is fairly easy
"Optimal” is impossible
- Real world: somewhere in between

* Better speedups with more static analysis

* Usually worth the added compile time

* Requires working at multiple levels of granularity
* Many active areas of research



e Local

- Local value numbering (8.4.1)
- Tree-height balancing (8.4.2)
- Peephole optimization (11.5)
* Regional
- Superlocal value numbering (8.5.1)
- Loop unrolling (8.5.2)
* Global

- Constant propagation (9.3.6, 10.7.1)
- Dead code elimination (10.2)

- Global code placement (8.6.2)

- Lazy code motion (10.3)

*  Whole-program Asides:

- Inline substitution (8.7.1) Data-flow analysis (Ch. 9)
Liveness analysis (8.5.1, 9.2.2)

- Procedure pl t(8.7.2 : i i
rocedure placement (8.7.2) Single static assignment (9.3)



I Local Value Numbering

* Detect and remove redundant computation

— Assign distinct numbers to each value computed
* Typically using a hashing scheme

- Requires SSA (or some similar scheme)
* Avoids removing incorrect “redundancies”

a = X
b =vy
c =a + b;
d =a+ b;
a =2z,
e = a+ b;

Original

a = X
b =vy
c =a + b;
d = c;
a = z;
e = a+ b;
Optimized

// same number as c (ao + b)

// NOT the same number as c¢ (a: + b)



I Tree-Height Balancing

* Balance expression trees

— Improves performance for CPUs with pipelining and/or
multiple functional units (i.e., instruction-level

parallelism)
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I Peephole Optimization

e Scan linear IR with sliding window ("peephole")

— Look for common inefficient patterns
- Replace with known equivalent sequences

Example:
storeAI r5 => [bp+8] ‘ storeAI r5 => [bp+8]
loadAI [bp+8] => r7 121 r5 => r7

Generalized pattern:

storeAI a => b ‘ storeAl a => b
loadAI b => ¢ i21 a =>c¢



I Loop Unrolling

* Replace loop body with multiple copies

~ Reduces number of comparisons and nonlocal jumps

~ Exposes additional opportunities for other
optimizations

int 1i;
for (i=0; i<N-4; i+=4) {
do_something(1);

for (int i=@; i<N; i++) { do_something(1+1);

do_something(i); do_something(i+2);

} do_something(1+3);
¥

for (; 1i<N; 1i++) {

Original , do_something(1),

Unrolled by factor of 4



I Profile: “Fran” Allen

Frances Allen (b. 1932, d. 2020)

B.S. and M.S. in Mathematics
Worked at IBM, NYU, Stanford among others

First female IBM Fellow

First female ACM Turing Award recipient

Many foundational papers on optimizations and Photo courtesy of Wikipedia
data flow analysis
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I Profile: Frances “Fran” Allen

l. Loop Unrolling. A loop can be unrolled
completely so that the successive computations
implied by the loop appear sequentially or it can
be partially unrolled as in the following example:

DO I =1TO 100 BY 1;

A(I) = A(I) + B(I);

END;

becomes when unrolled by 2:

DO I =1 TO 100 BY 2;
A(I) = A(I) + B(I);
A(I+l) = A(I+1) + B(I+1);
END;

The advantages of loop unrolling are that

a. the number of instructions executed is
reduced. In the preceeding example the number of
increments and tests for loop control is halved.

b. more instructions are exposed for parallel
execution. The two statements in the unrolled form
of the preceding example can be executed at the
same time since they are independent.

https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf



I Dead Code Elimination

* Remove non-live definitions

- Requires liveness analysis

int X a + b; // original
int y a - b;
return x + 2;

int Xx = a + b; // reduced code size
return x + 2;



I Global Code Placement

* Arrange basic blocks in order according to likely
control flow at run time (hot path)

- Takes advantage of code locality (lower cost of fallthrough
vs. taken branches)

- Requires profiling information
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I Lazy Code Motion

* Move loop-invariant expressions out of loops
- Combines three different dataflow analyses

// original

for (int 1=0; i<nblocks; i++) {
a = sqrt(cos(b)+sin(b));
printf("%f\n", calc_something(a+(float)i));

// optimized

a = sgrt(cos(b)+sin(b));
for (int i=0; i<nblocks; i++) {

printf("%f\n", calc_something(a+(float)i));
h



I Tall Recursion Elimination

e Some recursive procedures can be converted to iterative
procedures automatically

- Avoids the overhead of multiple calls

// removed talil recursion

// original int fact_rec(int acc, int n) {
loop:
int fact(int n) { if (n < 2) return acc;
if (n < 2) return 1; acc *= n;
return n * fact(n - 1); n--;
} goto loop;
b

// tail-recursive version o o ]
// inlined and condition-inverted

int fact(int n) {

return fac_rec(1, n); int fact(int n) {

} int acc = 1,

int fact_rec(int acc, int n) { while (n*i 1? {
if (n < 2) return acc; acc. = Ny
return fac_rec(n * acc, n - 1); ) n--,

}

return acc;



I Inline Substitution

* Replace procedure call with callee’s body

- Avoids call overhead and exposes additional opportunities for
other optimizations

— Decision procedure to choose when to inline

* Many potential criteria (callee/caller size, call count, etc.)

int foo(int x, int y) {
return x + bar(y);

3 . .
int main() { " bar(2).
a = too(1,2); b = 3 + bar(4);
b = fo0(3,4); c =5 + bar(6);
¢ = Too(5,6); return a + b + c;
return a + b + c; 1

Original Inlined foo into main



I Procedure Placement

* Extension of global code placement to

procedures
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I Link-Time Optimization

* Most compilers focus on a portion of the program at a time

— Called a compilation unit (often a single file, class, or
procedure)

— Provides straightforward parallelization
— Obstructs whole-program optimizations
— Link-time optimization looks at the entire program

printf.o

hello.c ’ roz;idsor ' hello.i Compiler | hello.s |Assembler ? hello.o Linker hello
P Ceon) T Lecly B (as) | 1 da) | 4
Source PP’ | Modified | Assembly | Relocatable Executable
program source program ' object object
(text) program (text) programs program
(text) (binary) (binary)

Figure 1.3 The compilation system.



I Compiler Research

Larger compilation units

- What is the right balance?

Smaller passes (e.g., nanopasses)

— Allows for easy re-runs of passes

Gradual typing: hybrid static & dynamic type checking

- Some variables are annotated and checked statically

— Others are checked at runtime

Incremental compilation: cache IRs for future compilation
— Improves re-compilation performance

Integrated development environments (IDES)

— Greater collaboration w/ developer

— Combination of systems and human-computer interaction (HCI)
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