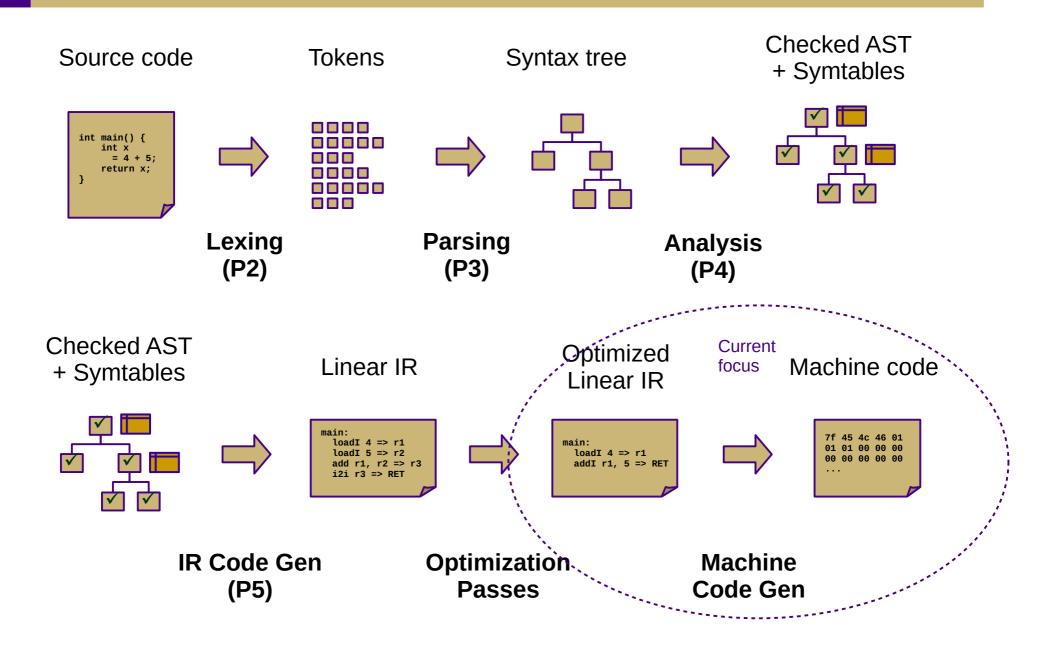
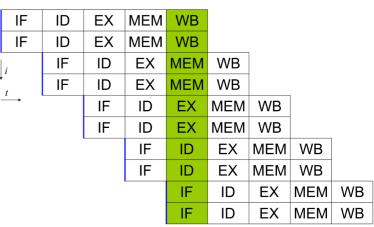
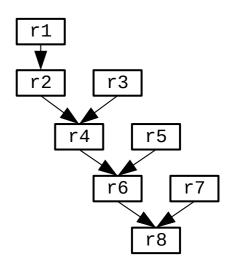

CS 432 Fall 2025


Mike Lam, Professor

https://xkcd.com/1542/


List Scheduling

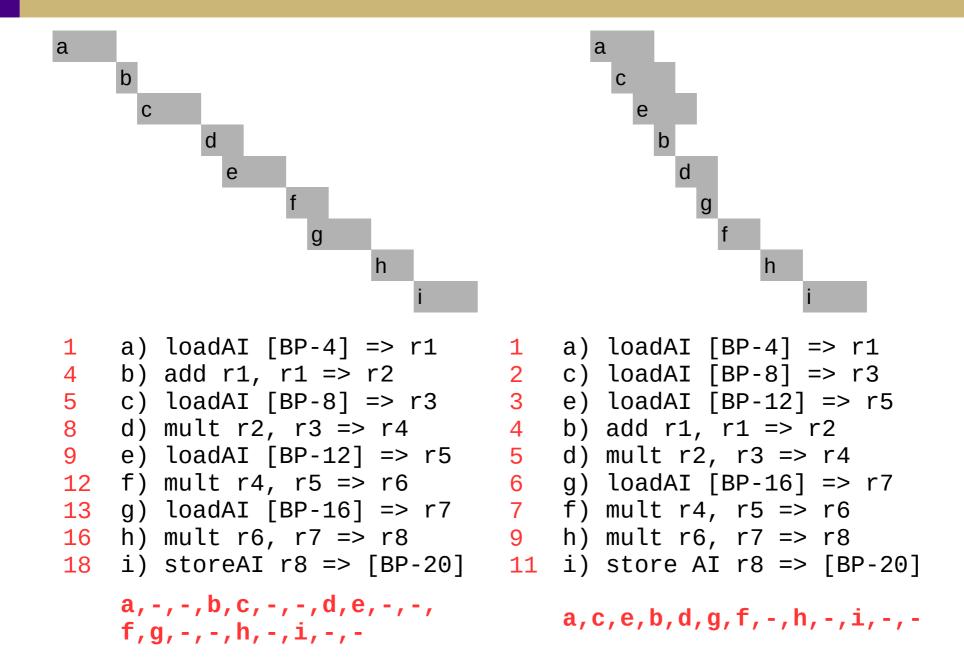
Compilers


Instruction Scheduling

- Modern architectures expose many opportunities for optimization
 - Some instructions require fewer cycles
 - Superscalar processing (multiple functional units)
 - Instruction pipelining
 - Speculative execution
- Primary obstacle: data dependencies
 - A stall is a delay caused by having to wait for an operand to load
- Scheduling: re-order instructions to improve performance
 - Maximize utilization and prevent stalls
 - Must not modify program semantics
 - Main algorithm: list scheduling

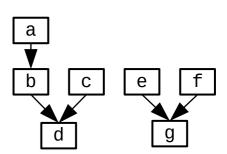
Example

- Which program is preferable?
- Assumptions:
 - Loads and stores have a 3-cycle latency
 - Multiplications have a 2-cycle latency
 - All other instructions have a 1-cycle latency


```
loadAI [BP-4] => r1
                              1 loadAI [BP-4] => r1
   add r1, r1 \Rightarrow r2
                              2 loadAI [BP-8] => r3
5
   loadAI [BP-8] => r3
                                 loadAI [BP-12] => r5
   mult r2, r3 => r4
                                  add r1, r1 => r2
   loadAI [BP-12] => r5
                                  mult r2, r3 => r4
   mult r4, r5 => r6
12
                         6
                                 loadAI [BP-16] \Rightarrow r7
  loadAI [BP-16] => r7
                                  mult r4, r5 => r6
13
16 mult r6, r7 => r8
                                  mult r6, r7 => r8
                              9
18 store AI r8 => [BP-20]
                                  store AI r8 => [BP-20]
                              11
```

Schedules

- A schedule is a list of instructions in start/issue order
 - Sometimes with "idle" cycles (no new instructions) marked with "-"
 - Example: "a, b, -, c, -, -" means "start instruction a on cycle one, b on cycle two, nothing on cycle three, c on cycle four, and then wait two more cycles for everything to finish"

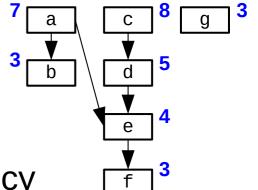

```
a) loadAI [BP-4] \Rightarrow r1
                                      a) loadAI [BP-4] \Rightarrow r1
    b) add r1, r1 => r2
                                      c) loadAI [BP-8] \Rightarrow r3
    c) loadAI [BP-8] \Rightarrow r3
                                      e) loadAI [BP-12] => r5
    d) mult r2, r3 => r4
                                      b) add r1, r1 => r2
    e) loadAI [BP-12] \Rightarrow r5
                                      d) mult r2, r3 => r4
12
   f) mult r4, r5 => r6
                                      g) loadAI [BP-16] => r7
    g) loadAI [BP-16] => r7 f) mult r4, r5 => r6
13
   h) mult r6, r7 => r8
                                      h) mult r6, r7 => r8
16
    i) storeAI r8 => [BP-20]
                                      i) store AI r8 => [BP-20]
18
    a, -, -, b, c, -, -, d, e, -, -,
                                      a,c,e,b,d,g,f,-,h,-,i,-,-
    f,g,-,-,h,-,i,-,-
```

Schedules

Data Dependence

- Data dependency (x = _; _ = x)
 - Read after write
 - Hard constraint
- Antidependency (_ = x; x = _)
 - Write after read (not generally present in SSA form)
 - Can rename second "x" to avoid (could require more register spills)
- Dependency graph
 - One for each basic block
 - Could have multiple roots; technically a forest of directed acyclic graphs (DAGs)
 - Nodes for each instruction
 - Edges represent data dependencies
 - Edge (n_1, n_2) means that n_1 must be done when n_2 runs

List Scheduling


- Prep work
 - Rename to avoid antidependencies
 - Build data dependence graph
 - Assign priority for each instruction
 - Usually based on node height and instruction latency
 - Priority of a leaf node is its latency
 - Priority of a branch node is its latency plus the maximum priority of any immediate successor
 - Goal: prioritize instructions on the critical path
 - Longest-latency path through the graph

List Scheduling

- Track a set of "ready" instructions
 - No remaining unresolved data dependencies; i.e., can be scheduled
- For each cycle:
 - Check all currently executing instructions for any that have finished
 - Add any new "ready" dependents to set
 - Start executing a new "ready" instruction (if there are any)
 - Greedy algorithm: if multiple instructions are ready, choose the one with the highest priority
 - Helps to note the cycle where the instruction will finish

Example

- Schedule the following code:
 - Loads and stores have a 3-cycle latency
 - Multiplications have a 2-cycle latency
 - All other instructions have a 1-cycle latency


```
[1]
         a) loadAI [BP-4] \Rightarrow r2
[1]
        b) storeAI r2 \Rightarrow [BP-8]
[4]
                                          [3]
        c) loadAI [BP-12] \Rightarrow r3
[5]
         d) add r3, r4 => r3
[8]
        e) add r3, r2 => r3
[9]
                                          [6]
        f) storeAI r3 => [BP-16]
[10]
         g) storeAI r7 \Rightarrow [BP-20]
[11]
                                          [8]
```

```
CYCLE READY START [DONE] DONE

[1] a,c,g c [3]

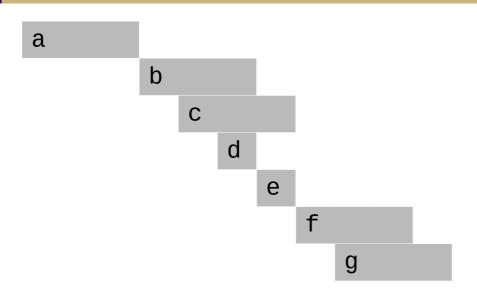
[2] a,g a [4]

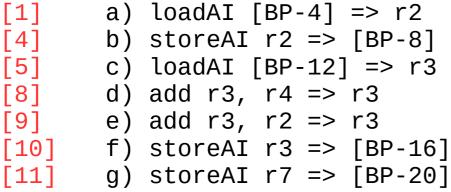
[3] g g [5] c

[4] d d [4] a,d

[5] b,e e [5] e,g

[6] b,f b [8]


[7] f f [9]


[8] - b

[9]
```

Original schedule:

Example

CYCLE
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

С

a

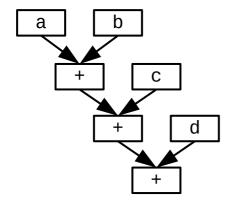
		е	
		b	
		f	
YCLE 1] 2]	READY a,c,g a,g	START [DONE] c [3] a [4]	DONE
3] 4]	g d	g [5] d [4]	c a,d
5] 6]	b,e b,f	e [5] b [8]	e, g
7]	f	f [9]	

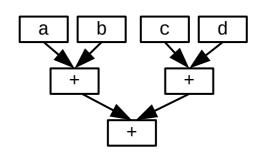
d

Original schedule:

New schedule: c,a,g,d,e,b,f,-,- (9 cycles)

Instruction Priorities


- Usually based on node height and latency first
 - Minimizes critical path
- Many methods for tie-breaking
 - Node's rank (# of successors; breadth-first search)
 - Node's descendant count
 - Latency (maximize resource efficiency)
 - Resource ordering (maximize resource efficiency)
 - Source code ordering (minimize reordering)
 - No clear winner here!


Tradeoffs

- Forward vs. backward list scheduling
 - Backward scheduling: build schedule in reverse
 - Choose last instruction on critical path first
 - Schedule from roots to leaves instead of leaves to roots
 - Similar to backward data flow analysis
 - List scheduling is cheap; just run several variants to see which works better for particular code segments

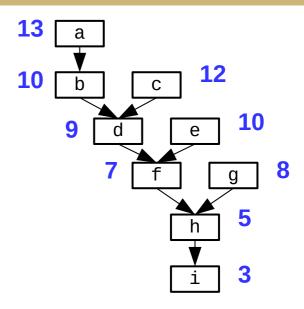
Tradeoffs

- Instruction scheduling vs. register allocation
 - Fewer registers → more sequential code
 - More registers → more possibilities for parallelism
 - Scheduling can also impact number of spills/loads

Fewer registers required (2)
More sequential (max latency = 6)

More registers required (3)
Less sequential (max latency = 5)

Regional scheduling


- Usually based on local list scheduling
- Extended using various techniques
 - Analyze extended basic blocks (chains of basic blocks)
 - Detect hot traces or paths using profile information
 - Sometimes need to insert compensation code
 - Sometimes need to clone entire blocks
- Particularly important for loops
 - Focus on core kernel of the loop
 - Constrained by loop-carried dependencies

Exercise

- Schedule this program from earlier
- Assumptions:
 - Loads and stores have a 3-cycle latency
 - Multiplications have a 2-cycle latency
 - All other instructions have a 1-cycle latency
 - a) loadAI $[BP-4] \Rightarrow r1$
 - b) add r1, r1 => r2
 - c) loadAI $[BP-8] \Rightarrow r3$
 - d) mult r2, r3 => r4
 - e) loadAI [BP-12] => r5
 - f) mult r4, r5 => r6
 - g) loadAI $[BP-16] \Rightarrow r7$
 - h) mult r6, r7 => r8
 - i) storeAI $r8 \Rightarrow [BP-20]$

Exercise

- Schedule this program from earlier
- Assumptions:
 - Loads and stores have a 3-cycle latency
 - Multiplications have a 2-cycle latency
 - All other instructions have a 1-cycle latency


```
a) loadAI [BP-4] => r1
b) add r1, r1 => r2
c) loadAI [BP-8] => r3
d) mult r2, r3 => r4
e) loadAI [BP-12] => r5
f) mult r4, r5 => r6
g) loadAI [BP-16] => r7
h) mult r6, r7 => r8
i) storeAI r8 => [BP-20]
```

<u>CYC</u>	RDY	START [DONE]	<u>DONE</u>
1	a,c,e,g	a [3]	
2	c,e,g	c [4]	
3	e,g	e [5]	a
4	b,g	b [4]	b,c
5	d,g	d [6]	е
6	g	g [8]	d
7	f	f [8]	
8		-	f,g
9	h	h [10]	
10		-	h
11	i	i [13]	
12		-	
13		-	i

List Scheduling Overview

- Build data dependence graph
- Assign priority for each instruction
 - Based on node height and instruction latency
 - Priority of a leaf node is its latency
 - Priority of a branch node is its latency plus the maximum priority of any immediate successor
- Track a set of "ready" instructions
 - No remaining unresolved data dependencies; i.e., can be scheduled
- For each cycle:
 - Check all currently executing instructions for any that have finished
 - Add any new "ready" instructions to set
 - Start executing a new "ready" instruction (if there are any)
 - Greedy algorithm: if multiple instructions are ready, choose the one with the highest priority