

CS 432
Fall 2025

Mike Lam, Professor

List Scheduling

https://xkcd.com/1542/

Compilers

int main() {
 int x
 = 4 + 5;
 return x;
}

Source code Tokens Syntax tree
Checked AST
+ Symtables

Lexing
(P2)

Parsing
(P3)

Analysis
(P4)

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

✓

✓ ✓

✓ ✓

main:
 loadI 4 => r1
 loadI 5 => r2
 add r1, r2 => r3
 i2i r3 => RET

Linear IR

main:
 loadI 4 => r1
 addI r1, 5 => RET

Optimized
Linear IR

IR Code Gen
(P5)

Optimization
Passes

Machine
Code Gen

Current
focus

Instruction Scheduling

● Modern architectures expose many opportunities for optimization
– Some instructions require fewer cycles
– Superscalar processing (multiple functional units)
– Instruction pipelining
– Speculative execution

● Primary obstacle: data dependencies
– A stall is a delay caused by having to wait for an operand to load

● Scheduling: re-order instructions to improve performance
– Maximize utilization and prevent stalls
– Must not modify program semantics
– Main algorithm: list scheduling

https://en.wikipedia.org/wiki/Superscalar_processor

Example

● Which program is preferable?
● Assumptions:

– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency

loadAI [BP-4] => r1
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
store AI r8 => [BP-20]

loadAI [BP-4] => r1
loadAI [BP-8] => r3
loadAI [BP-12] => r5
add r1, r1 => r2
mult r2, r3 => r4
loadAI [BP-16] => r7
mult r4, r5 => r6
mult r6, r7 => r8
store AI r8 => [BP-20]

1
4
5
8
9
12
13
16
18

1
2
3
4
5
6
7
9
11

r1

r2 r3

r4 r5

r6 r7

r8

Schedules

● A schedule is a list of instructions in start/issue order
– Sometimes with “idle” cycles (no new instructions) marked with “-”
– Example: “a,b,-,c,-,-” means “start instruction a on cycle one,

b on cycle two, nothing on cycle three, c on cycle four, and then
wait two more cycles for everything to finish”

a) loadAI [BP-4] => r1
b) add r1, r1 => r2
c) loadAI [BP-8] => r3
d) mult r2, r3 => r4
e) loadAI [BP-12] => r5
f) mult r4, r5 => r6
g) loadAI [BP-16] => r7
h) mult r6, r7 => r8
i) storeAI r8 => [BP-20]

a) loadAI [BP-4] => r1
c) loadAI [BP-8] => r3
e) loadAI [BP-12] => r5
b) add r1, r1 => r2
d) mult r2, r3 => r4
g) loadAI [BP-16] => r7
f) mult r4, r5 => r6
h) mult r6, r7 => r8
i) store AI r8 => [BP-20]

1
4
5
8
9
12
13
16
18

1
2
3
4
5
6
7
9
11

a,-,-,b,c,-,-,d,e,-,-,
f,g,-,-,h,-,i,-,-

a,c,e,b,d,g,f,-,h,-,i,-,-

Schedules

a) loadAI [BP-4] => r1
b) add r1, r1 => r2
c) loadAI [BP-8] => r3
d) mult r2, r3 => r4
e) loadAI [BP-12] => r5
f) mult r4, r5 => r6
g) loadAI [BP-16] => r7
h) mult r6, r7 => r8
i) storeAI r8 => [BP-20]

a) loadAI [BP-4] => r1
c) loadAI [BP-8] => r3
e) loadAI [BP-12] => r5
b) add r1, r1 => r2
d) mult r2, r3 => r4
g) loadAI [BP-16] => r7
f) mult r4, r5 => r6
h) mult r6, r7 => r8
i) store AI r8 => [BP-20]

1
4
5
8
9
12
13
16
18

1
2
3
4
5
6
7
9
11

a,-,-,b,c,-,-,d,e,-,-,
f,g,-,-,h,-,i,-,-

a,c,e,b,d,g,f,-,h,-,i,-,-

a

b

c

d

e

f

g

h

i

a

c

e

b

d

g

f

h

i

Data Dependence

● Data dependency (x = _; _ = x)
– Read after write
– Hard constraint

● Antidependency (_ = x; x = _)
– Write after read (not generally present in SSA form)
– Can rename second “x” to avoid (could require more register spills)

● Dependency graph
– One for each basic block

● Could have multiple roots; technically a forest of directed acyclic graphs (DAGs)
– Nodes for each instruction
– Edges represent data dependencies

● Edge (n
1
, n

2
) means that n

1
 must be done when n

2
 runs

a

b c

d

e f

g

List Scheduling

● Prep work
– Rename to avoid antidependencies
– Build data dependence graph
– Assign priority for each instruction

● Usually based on node height and instruction latency
– Priority of a leaf node is its latency
– Priority of a branch node is its latency plus the maximum priority

of any immediate successor
● Goal: prioritize instructions on the critical path

– Longest-latency path through the graph

List Scheduling

● Track a set of "ready" instructions
– No remaining unresolved data dependencies; i.e., can be

scheduled
● For each cycle:

– Check all currently executing instructions for any that have
finished

● Add any new "ready" dependents to set
– Start executing a new "ready" instruction (if there are any)

● Greedy algorithm: if multiple instructions are ready, choose the one with
the highest priority

● Helps to note the cycle where the instruction will finish

Example

● Schedule the following code:
– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency

a) loadAI [BP-4] => r2
b) storeAI r2 => [BP-8]
c) loadAI [BP-12] => r3
d) add r3, r4 => r3
e) add r3, r2 => r3
f) storeAI r3 => [BP-16]
g) storeAI r7 => [BP-20]

CYCLE READY START [DONE] DONE
[1] a,c,g c [3]
[2] a,g a [4]
[3] g g [5] c
[4] d d [4] a,d
[5] b,e e [5] e,g
[6] b,f b [8]
[7] f f [9]
[8] - b
[9] - f

[1]
[4]
[5]
[8]
[9]
[10]
[11]

a

b

c

d

e

g

f
3

4

5

8 37

3

New schedule:
 c,a,g,d,e,b,f,-,- (9 cycles)

Original schedule:
 a,-,-,b,c,-,-,d,e,f,g,-,-
(13 cycles)

Example

a) loadAI [BP-4] => r2
b) storeAI r2 => [BP-8]
c) loadAI [BP-12] => r3
d) add r3, r4 => r3
e) add r3, r2 => r3
f) storeAI r3 => [BP-16]
g) storeAI r7 => [BP-20]

CYCLE READY START [DONE] DONE
[1] a,c,g c [3]
[2] a,g a [4]
[3] g g [5] c
[4] d d [4] a,d
[5] b,e e [5] e,g
[6] b,f b [8]
[7] f f [9]
[8] b
[9] f

[1]
[4]
[5]
[8]
[9]
[10]
[11]

New schedule:
 c,a,g,d,e,b,f,-,- (9 cycles)

Original schedule:
 a,-,-,b,c,-,-,d,e,f,g,-,-
(13 cycles)

a

b

c

d

e

f

g

c

a

g

d

e

b

f

Instruction Priorities

● Usually based on node height and latency first
– Minimizes critical path

● Many methods for tie-breaking
– Node's rank (# of successors; breadth-first search)
– Node's descendant count
– Latency (maximize resource efficiency)
– Resource ordering (maximize resource efficiency)
– Source code ordering (minimize reordering)
– No clear winner here!

Tradeoffs

● Forward vs. backward list scheduling
– Backward scheduling: build schedule in reverse

● Choose last instruction on critical path first
● Schedule from roots to leaves instead of leaves to roots
● Similar to backward data flow analysis

– List scheduling is cheap; just run several variants to
see which works better for particular code segments

Tradeoffs

● Instruction scheduling vs. register allocation
– Fewer registers → more sequential code
– More registers → more possibilities for parallelism
– Scheduling can also impact number of spills/loads

a b

+ c

+ d

+

c da b

+ +

+

Fewer registers required (2)
More sequential (max latency = 6)

More registers required (3)
Less sequential (max latency = 5)

Regional scheduling

● Usually based on local list scheduling
● Extended using various techniques

– Analyze extended basic blocks (chains of basic blocks)
– Detect hot traces or paths using profile information
– Sometimes need to insert compensation code
– Sometimes need to clone entire blocks

● Particularly important for loops
– Focus on core kernel of the loop
– Constrained by loop-carried dependencies

Exercise

a) loadAI [BP-4] => r1
b) add r1, r1 => r2
c) loadAI [BP-8] => r3
d) mult r2, r3 => r4
e) loadAI [BP-12] => r5
f) mult r4, r5 => r6
g) loadAI [BP-16] => r7
h) mult r6, r7 => r8
i) storeAI r8 => [BP-20]

● Schedule this program from earlier
● Assumptions:

– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency

Exercise

a) loadAI [BP-4] => r1
b) add r1, r1 => r2
c) loadAI [BP-8] => r3
d) mult r2, r3 => r4
e) loadAI [BP-12] => r5
f) mult r4, r5 => r6
g) loadAI [BP-16] => r7
h) mult r6, r7 => r8
i) storeAI r8 => [BP-20]

● Schedule this program from earlier
● Assumptions:

– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency

a

b c

d e

f g

h

i 3

5

87

109

1210

13

CYC RDY START [DONE] DONE
1 a,c,e,g a [3]
2 c,e,g c [4]
3 e,g e [5] a
4 b,g b [4] b,c
5 d,g d [6] e
6 g g [8] d
7 f f [8]
8 - f,g
9 h h [10]
10 - h
11 i i [13]
12 -
13 - i

List Scheduling Overview

● Build data dependence graph
● Assign priority for each instruction

– Based on node height and instruction latency
● Priority of a leaf node is its latency
● Priority of a branch node is its latency plus the maximum priority of any

immediate successor
● Track a set of "ready" instructions

– No remaining unresolved data dependencies; i.e., can be scheduled
● For each cycle:

– Check all currently executing instructions for any that have finished
– Add any new "ready" instructions to set
– Start executing a new "ready" instruction (if there are any)

● Greedy algorithm: if multiple instructions are ready, choose the one with the
highest priority

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

