o | 'r-.-,v'.’.'.'ma,«-a-u;w;.-_a.a.-:“_u.;:q.a:-:.r.'ﬂw,,:.m“._u o4

il I e

CS 482 meneming
Fall 2025 e e

NSCC 2012 0| amme e

Mike Lam, Professor === =====

https://xkcd.com/1542/

List Scheduling

Compilers

Checked AST
Source code Tokens Syntax tree
+ Symtables
int main() { EEEED E
| o 6 2 = @ Bm
return Xx; DDDD
oooaoao
ooo
Lexing Parsing Analysis
(P2) (P3) (P4)
Checked AST t Current Tl
: imized .
+ Symtables Linear IR "'OL%ear IR focus Machine code
E main: ,"' 7f 45 4c 46 01
1oact 4 = > maig; I 4= r1 01 01 00 00 00
E |:> ;E;dr{;_;zR:: r3 |:> el\dd‘]‘: ri, 5 => RET |:> 9900 00 00 00
IR Code Gen Optimization.. Machine
(P5) Passes Code Gen

-
~o PR
-~
-~y
-
-~

—‘—
-
-
-
- -

~

I Instruction Scheduling

* Modern architectures expose many opportunities for optimization
— Some instructions require fewer cycles
— Superscalar processing (multiple functional units)
— Instruction pipelining
— Speculative execution
* Primary obstacle: data dependencies
— Astall is a delay caused by having to wait for an operand to load
* Scheduling: re-order instructions to improve performance

— Maximize utilization and prevent stalls

— Must not modify program semantics T T e T B
— Main algorithm: list scheduling F | 1D | EX [MEM|{WB
; IF ID | EX |MEM WB
, IF ID | EX |MEM WB

o IF ID | EX |MEM| WB
IF ID | EX |MEM| WB
IF ID | EX [MEM| WB
IF ID | EX [MEM| WB
IF ID | EX MEM| WB
IF ID | EX MEM| WB

https://en.wikipedia.org/wiki/Superscalar_processor

I Example

. . ri
* Which program is preferable? v
* Assumptions: <L
— Loads and stores have a 3-cycle latency I ra I rs
~ Multiplications have a 2-cycle latency \ﬁ.fﬁ/ —

— All other instructions have a 1-cycle latency

loadAI [BP-4] => r1

1 loadAI [BP-4] => r1
4 add r1, r1 => r2

)

8

1
2 loadAI [BP-8] => r3
loadAI [BP-8] => r3 3 loadAI [BP-12] => r5
mult r2, r3 => r4 4 add ri1, rl1 => r2
9 loadAI [BP-12] => r5 5 mult r2, r3 =>r4
12 mult r4, r5 => ré6 6 loadAI [BP-16] => r7
13 loadAI [BP-16] => r7 7 mult r4, r5 => ré6
16 mult r6, r7 => r8 9 mult r6, r7 => r8
1

18 store AI r8 => [BP-20] 1 store AI r8 => [BP-20]

I Schedules

* A schedule is a list of instructions In start/issue order

— Sometimes with “idle” cycles (no new instructions) marked with “-

- Example: “a, b, -, ¢, -, -" means “start instruction a on cycle one,
b on cycle two, nothing on cycle three, c on cycle four, and then
wait two more cycles for everything to finish”

1 a) loadAI [BP-4] => r1 1 a) loadAI [BP-4] => r1

4 b) add r1, r1 => r2 2 ¢c) loadAI [BP-8] => r3

5 c) loadAI [BP-8] => r3 3 e) loadAI [BP-12] => r5

8 d) mult r2, r3 => r4 4 b)) add r1, rl1 => r2

9 e) loadAI [BP-12] => r5 5 d) mult r2, r3 =>r4

12 f) mult r4, r5 => ré6 6 g) loadAI [BP-16] => r7

13 g) loadAI [BP-16] => r7 7 f) mult r4, r5 => r6

16 h) mult r6, r7 => r8 9 h) mult r6, r7 => r8

18 1) storeAI r8 => [BP-20] 11 1) store AI r8 => [BP-20]
2,;’:::?:ﬁ:::;—:(j:?,-,-, alclelbldlglfl-Ihl-lil-l-

~

-.

Hh® -S> Q DO QO T D
— N e e N N N

"o
T

loadAI [BP-4] => r1l
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 =>r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
storeAI r8 => [BP-20]

I-Iblcl-ljldlel-l-l
l'l'lhl'lll'l'

"

P O~NOOTDhWNE

[
H-OHhQ QT DO O QO

N N N N N N N N N

loadAI [BP-4] => r1
loadAI [BP-8] => r3
loadAI [BP-12] => r5
add r1, r1 => r2

mult r2, r3 =>r4
loadAI [BP-16] => r7
mult r4, r5 => r6

mult r6, r7 => r8
store AI r8 => [BP-20]

alclelbldlglfl'Ihl'lil'l'

I Data Dependence

* Data dependency (x =_,_ =X)

— Read after write

— Hard constraint
* Antidependency (_ =x; X =_)

— Write after read (not generally present in SSA form)

— Can rename second “x” to avoid (could require more register spills)
* Dependency graph

— One for each basic block

* Could have multiple roots; technically a forest of directed acyclic graphs (DAGS)
— Nodes for each instruction

— Edges represent data dependencies
* Edge (n,, n,) means that n, must be done when n, runs

Ol

RV-AR-V{

I List Scheduling

* Prep work

— Rename to avoid antidependencies
— Build data dependence graph

— Assign priority for each instruction

* Usually based on node height and instruction latency

— Priority of a leaf node is its latency

— Priority of a branch node is its latency plus the maximum priority
of any immediate successor

* Goal: prioritize instructions on the critical path
— Longest-latency path through the graph

I List Scheduling

* Track a set of "ready" instructions

~ No remaining unresolved data dependencies; i.e., can be
scheduled

* For each cycle:

— Check all currently executing instructions for any that have
finished

* Add any new "ready" dependents to set
— Start executing a new "ready" instruction (if there are any)

* Greedy algorithm: if multiple instructions are ready, choose the one with
the highest priority

* Helps to note the cycle where the instruction will finish

I Example

73 =18
* Schedule the following code: S 2 g
~ Loads and stores have a 3-cycle latency : d \
~ Multiplications have a 2-cycle latency -
— All other instructions have a 1-cycle latency r]°

CYCLE READY START [DONE] DONE

[1] a) loadAI [BP-4] => r2 [1] a,c,g c [3]

[4] b) storeAI r2 => [BP-8] [2] a, g a [4]

[5] c) loadAI [BP-12] => r3 E’H g 9 m ©

[8] d) add r3, r4 => r3 (5] b e e [5] e'g

[9] e) add r3, r2 => r3 [6] b:f b [8] '

[10] f) storeAI r3 => [BP-16] [7] f f [9]

[11] g) storeAI r7 => [BP-20] [38] - b
[9] f

Original schedule:
a,-,-,b,¢,-,-,d,e,f,g,-,- New schedule:
(13 cycles) c,a,g,d, e, b, f,-,- (9cycles)

CYCLE READY START [DONE] DONE

[1] a) loadAI [BP-4] => r2 [1] a,c,g ¢ [3]

[4] b) storeAI r2 => [BP-8] [2] a,g a [4]

[5] c) loadAI [BP-12] => r3 m : g EH °

[8] d) add r3, r4 => r3 (5] b e e [5] e'g

[9] e) add r3, r2 =>r3 [6] b:f b [8] '

[10] f) storeAI r3 => [BP-16] [7] f f [9]

[11] g) storeAI r7 => [BP-20] [38] b
[9] f

Original schedule:
al'l'Iblcl'l'ldlelflgl'l' New schedule:
(13 cycles) c,a,g,d,e,b,f,-,- (9cycles)

I Instruction Priorities

* Usually based on node height and latency first
— Minimizes critical path
* Many methods for tie-breaking

— Node's rank (# of successors; breadth-first search)
— Node's descendant count

— Latency (maximize resource efficiency)

— Resource ordering (maximize resource efficiency)
— Source code ordering (minimize reordering)

~— No clear winner here!

I Tradeoffs

* Forward vs. backward list scheduling

- Backward scheduling: build schedule in reverse

* Choose last instruction on critical path first
 Schedule from roots to leaves instead of leaves to roots
* Similar to backward data flow analysis

— List scheduling is cheap; just run several variants to
see which works better for particular code segments

I Tradeoffs

* Instruction scheduling vs. register allocation
— Fewer registers — more sequential code
— More registers — more possibilities for parallelism
— Scheduling can also impact number of spills/loads

e 4

Fewer registers required (2) More registers required (3)
More sequential (max latency = 6) Less sequential (max latency = 5)

I Regional scheduling

* Usually based on local list scheduling

* Extended using various technigues
— Analyze extended basic blocks (chains of basic blocks)
— Detect hot traces or paths using profile information
— Sometimes need to insert compensation code
— Sometimes need to clone entire blocks

* Particularly important for loops

— Focus on core kernel of the loop
— Constrained by loop-carried dependencies

I Exercise

* Schedule this program from earlier

* Assumptions:

— Loads and stores have a 3-cycle latency
— Multiplications have a 2-cycle latency
— All other instructions have a 1-cycle latency

loadAI [BP-4] => r1l
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
storeAl r8 => [BP-20]

H->Q O QO TD
— N N N N e N N

I Exercise

13

Ul
=
N

* Schedule this program from earlier 10

* Assumptions:
— Loads and stores have a 3-cycle latency

o [=] 10
dsa i

— Multiplications have a 2-cycle latency <, o
— All other instructions have a 1-cycle latency h] °
v
i] 3
a) loadAI [BP-4] => r1 CYC RDY START [DONE] DONE
b) add r1, r1 => r2 1 a,c,e, g a [3]
c) loadAI [BP-8] => r3 2 ¢e9 ¢ [4]
d) mult r2, r3 => r4 PR o b
e) loadAI [BP-12] => r5 5 d, g d [6] e
f) mult r4, r5 => r6 6 9 g [8] d
g) loadAI [BP-16] => r7 bt 8] -
h) mult r6, r7 => r8 9 h h [10] '
1) storeAI r8 => [BP-20] 10 - h
11 i i [13]

I List Scheduling Overview

Build data dependence graph

* Assign priority for each instruction

— Based on node height and instruction latency
* Priority of a leaf node is its latency

* Priority of a branch node is its latency plus the maximum priority of any
immediate successor

Track a set of "ready" instructions
— No remaining unresolved data dependencies; i.e., can be scheduled

For each cycle:
— Check all currently executing instructions for any that have finished
— Add any new "ready" instructions to set

— Start executing a new "ready" instruction (if there are any)

* Greedy algorithm: if multiple instructions are ready, choose the one with the
highest priority

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

