IF YOURE HAVIN' PERL T GOT 99 S0 T UsSED Now T HAVE
PROBLEMS I FEEL REGULAR, 100 PROBLEMS.
BAD FOR YOU, SON—

cel L hg 7759 T

https://xkcd.com/1171/

Mike Lam, Professor
al(bc)*

Regular Expressions

and

Finite Automata

.

Current
focus

.........

- ~ -
- ~
-
-
-
.

~
~
S e

~“Source code Tokens:..

Parsing

"Front end"

"Back end"
A

—

N

Syntax tree Machine code

:]:].
4
i

Code Generation

) & Optimization

I Lexical Analysis

* Lexemes or tokens: the smallest building blocks of a
anguage's syntax

* Lexing or scanning: the process of separating a
character stream into tokens

total = sum(vals) / n char *str = "hi";
total identifier char keyword

= equals_op * star_op

sum identifier str identifier
(left_paren = equals_op
vals identifier "hi" str_literal
) right_paren ; semicolon

/ divide_op

n identifier

 What Is a language?

* Alanguage is "a (potentially infinite) set of
strings over a finite alphabet”

I Discussion guestion

* How do we describe languages?

Xyy Xy

X Xyy

x¥yzzz XyZz Xy Xyy

Xyz Xyyz Xyz Xyyz

Xyzz Xyzz Xyzz Xyyzz
Xyyzz Xyyzz Xyzzz Xyyzzz
Xyyz Xyzzz (etc.)

Xyzzz Xyyzzz
(etc.) (etc.)

I Language description

* Ways to describe languages

- Ad-hoc prose

* “Asingle ‘X’ followed by one or two ‘y’s followed by
any number of ‘z’s”

- Formal regular expressions (current focus)
* x(ylyy)z*

- Formal grammars (in two weeks)
« AL XxBC

*B-ylyy
'C—)ZC'E

I Languages

Chomsky Hierarchy of Languages

Recursively enumerable

- - -
=" -~y

Context- sensmve

|
. Most useful

Regular for compilers
* Alphabet:
— 2 ={finite set of all characters }
* Language:

— L ={ potentially infinite set of sequences of characters from Z }

I Aside: Alphabets

* In this class, we will mostly stick to ASCII characters
— This is mostly for simplicity
~— However, it is a very American-focused character set

~— (It's in the name! American Standard Code for Information
Interchange)

* Man¥ modern languages support Unicode for variable
and function names

— This covers most major world alphabets

~— But keywords and core library function names are usually in
English, creating barriers for non-native English speakers

~ If you are interested in an alternative, check out , a
multi-lingual programming language

Print heuo
T ED R &F

Lo Jos

https://www.hedy.org/

I Regular expressions

* Regular expressions describe regular languages
— Can also be thought of as generalized search patterns

* Three basic recursive operations:

— Alternation: A|B Lowest precedence
— Concatenation: AB or A B . .

§) = Additionally: € is a
- (Kleene) Closure: A* Highest precedence regex that matches

the empty string

* Extended constructs:
— Character sets/classes: [0-9] =[0...9] = 0]1]2|3]4|5|6]7|8|9
~ Repetition / positive closure: A2 = AA A® = AAA A+ = AA*
— Grouping: (A|B)C = AC|BC

These are not covered extensively in your textbook!

I Regular expressions

* Symbols with special meaning in regular expressions
must be “escaped” to match the actual symbol

~ E.g., a* matches an “a” followed by an asterisk (“*”)
~— This is not usually necessary inside a character class
* E.g., a[*] =a*
* Alternation of character classes can be condensed
- E.g., [a-Z]|[A-Z] =[a-zA-Z]
* Starting a character class with a caret (“*”) forms the
complement
~ E.g., [*abc] matches any character that is NOT “a”, “b”, or “c”

~ Outside a character class, » matches the beginning of a
string and $ matches the end of a string (this is not the case

In your textbook)

I Discussion guestion

* How would you implement regular expressions?

— Given a regular expression and a string, how would
you tell whether the string belongs to the language
described by the regular expression?

I Lexical Analysis

* Implemented using state machines (finite automata)

— Set of states with a single start state
— Transitions between states on inputs (w/ implicit dead states)
— Some states are final or accepting

ab

I Lexical Analysis

Deterministic vs. non-deterministic

Non-deterministic: multiple possible states for given sequence

One edge from each state per character (deterministic)
* Might lead to implicit “dead state” w/ self-loop on all characters
Multiple edges from each state per character (non-deterministic)

“Empty” or e-transitions (non-deterministic)

a a
0

Deterministic (DFA) Non-deterministic (NFA)

I Deterministic finite automata

a

* Formal definition
S: set of states m
2. alphabet (set of characters) o1 s2
d: transition function: (S, 2) - S
. S={sl1,s2}
S,. start state s—{al
S,: accepting/final states 0 ={ (fl’ a - s2),(s2,a - @)}
So=S
Sa={s2}
* Acceptance algorithm
S :=So Alternative o representation:

for each input c:
s := 0(s,0) sl s2
return s € Sa s2 @

I Non-deterministic finite automata

* Formal Definition
- S, %2, s,and SA same as DFA

» So»

- 0. (S, Zu{ed) - [T]

— ¢-closure: all states reachable from s via e-transitions
* Formally: e-closure(s) ={s}u{te S| (s,g)-ted}
* Extended to sets by union over all states in set

* Acceptance algorithm

T := e-closure(sy)

for each input c:
N:={}
for each sin T:

N := N u e-closure(6(s,c))

T:=N

return |T n Sa| > 0

S: set of states

2. alphabet (set of characters)
d: transition function: (S, 2) - S
S,. start state

S,: accepting/final states

accept():
S =Sy
for each input c:
s := 0(s,0)
return s € Sp

NFAs

* 0 may return a set of states
* 0 may contain g-transitions

accept():

T := e-closure(sy)

for each input c:
N:=1{}
for each sin T:

N := N u &e-closure(6(s,c))

T:=N

return |T n Sa| >0

I Equivalence

* Aregular expression and a finite automaton are
equivalent if they recognize the same language

- gzme applies between different REs and between different
S

* Regular expressions, NFAs, and DFAs all describe the
same set of languages

~— "Regular languages" from Chomsky hierarchy
* Next week, we will learn how to convert between them

* Examples:
alb ab a*
a a b
PO Voo o
b
aa*|b

ab*

b a(bc|c*)
o &

Unsigned integers

0111...9][0...9]*

Identifiers

([A...Z]|[a...2]) (A...Z]|[a...Z]|[O... 9])* ()i

L
O~

Multi-line comments -

0
f*(“:l*\""‘f)* */ (s0 *"

(x| /)

uses a caret for negation outside a character class

I Exercise

* Construct state machines for the following
regular expressions:

X*yz* 1(1]0)* 1(10)* (a]b|c)(ablbc)

(dd*d*)l(d*dd*) ~ &-transitions may make this one slightly easier

I Application

* P1: Use POSIX regular expressions to tokenize Decaf files
— Process the input one line at a time

— Generally, create one regex per token type
* Each regex begins with “*” (only match from beginning)
* Prioritize regexes and try each of them in turn
* When you find a match, extract the matching text
* Repeat until no match is found or the input is consumed
— Less efficient than an auto-generated lexer
* However, it is simpler to understand

. r roach to P2 will be similar
Our approach to b Source code Tokens

char data[20];

OO0 0o
(] (]

oooooo
oooooo
oooooo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

