CS 432
Fall 2024

Mike Lam, Professor

Data-Flow Analysis

Compilers

Checked AST
Source code Tokens Syntax tree + Symtables
int main() ¢ EEEED EE
o= B o =
oooaoao
ooo
Lexing Parsing Analysis
(P2) (P3) (P4)
Checked AST T current -
+ Symtables .~ Linear IR~ % Optimized ™., Machine code

Linear IR

E main:

,
.
,
’
’ Y f 45 4c 46 01
loadI 4 => r1 main: ;1 01 00 00 00
loadI 5 => r2 loadr 4 =>ri 00 00 00 00 00
E add r1, r2 => r3 addI ri1, 5 => RET
,
A)
A}
A}
.
A Y
.

i2i r3 => RET

IR Code Ge‘r’rx\ Optimization Machine
(P5) T Passes ...~ " Code Gen

I Optimization

int a;

a=0;

while (a < 10) {
a=a+1;

b

loadIl 0 => r1
loadIl 10 => r2
11:

cmp_LT r1, r2 => r4

cbr r4 => 12, 13
12:
addI r1, 1 => r1
jump 11
13:

=

-

étoreAI ri => [bp-4] -

loadI 0 => r1
storeAl r1 => [bp-4]
11:
loadAI [bp-4] => r2
loadI 10 => r3
cmp_LT r2, r3 =>r4
cbr r4 => 12, 13
12:
loadAI [bp-4] => r5
loadI 1 => r6
add r5, r6 => r7
storeAIl r7 => [bp-4]
jump 11
13:

loadI 10 => r1
storeAl rl1 => [bp-4]

I Optimization Is Hard

 Problem: it's hard to reason about all possible executions

— Preconditions and inputs may differ

— Optimizations should be correct and efficient in all cases
e Optimization tradeoff: investment vs. payoff

"Better than naive" is fairly easy
"Optimal” is impossible
- Real world: somewhere in between

* Better speedups with more static analysis
* Usually worth the added compile time

e Also: linear IRs (e.g., ILOC) don't explicitly expose control flow

— This makes analysis and optimization difficult

— Need to re-introduce some representation of possible control flow

I Aside: Verifying Returns in P3

* |Isis tempting to try to verify that functions end with a return
statement in P3, but this is not possible with a naive approach

e Consider cases like this:

def int foo(bool x)

=

{
// other code here
if (x) {
return 5;
} else {
return 10;
}
}

This is guaranteed to be safe
(every path has a return
statement) but requires non-
trivial, non-local static analysis to
verify (i.e., can't just check the
last statement in the function)

I Control-Flow Graphs

e Basic blocks

- "Maximal-length sequence of branch-free code"
- "Atomic" sequences (instructions that always execute together)

e Control-flow graph (CFG) (note overloaded acronym)

- Nodes/vertices for basic blocks

— Edges for control transfer
* Branch/jump instructions (explicit) or fallthrough (implicit)
 pisapredecessor of g if there is a path from p to g
- pis an immediate predecessor if there is an edge directly from p to g

e (gis asuccessor of pif there is a path from p to g

- gis an immediate successor if there is an edge directly from p to g

I Control-Flow Graphs

e Conversion: linear IR to CFG

- Find leaders (initial instruction of a basic block) and build blocks
* InILOC, every call or jump target is a leader

- Add edges between blocks based on jumps/branches and fallthrough
— Complicated by indirect jumps (none in our ILOC!)

foo
loadAI [bp-4] => r1
foo:

cbr ri1 => 11, 12
loadAI [bp-4] => r1

cbr r1 => 11, 12 /
11: 11 12
loadIl 5 => r2

loadI 10 => r2
13: 13
storeAl r2 => [bp-4]

jump 13 > }Sﬁgllg = re loadI 10 => r2
B \/

storeAI r2 => [bp-4]

I Static CFG Analysis

* Single block analysis Is easy, and trees are too
* General CFGs are harder

- Which branch of a conditional will execute?
- How many times will a loop execute?

 How do we handle this?

- One method: iterative data-flow analysis

- Simulate all possible paths through a region of code
- “Meet-over-all-paths” conservative solution

- Meet operator combines information across paths

I Semilattices

* In general, a semilattice is a set of values L, special values T
(top) and L (bottom), and a meet operator » such that

- a=zbiffa®*b=>Db

- a>biffazbanda#b
- aT=aforallael

- a~1=1 forallaelL

* Partial ordering

- Monotonic

{} (T)

I
>

} 4, ds} 4, 4]

ddzdj (L)

Figure 9.22 from Dragon book: semilattice of
definitions using U (set union) as the meet operation

I Constant propagation

* For sparse simple constant propagation (SSCP), the
lattice Is very shallow

- ¢ T=c forallc

T

= Cf G Cx Cf Cp--

- cMl=1 forallc

- cc=cifc=c 1
! J ' ' J Semilattice for Constant
. Ci A Cj = | If Ci + Cj Propagation

* Basically: each SSA value is either unknown (T), a known
constant (c), or it is a variable (L)

— Initialize to unknown (1) for all SSA values
— Interpret operations over lattice values (always lowering)
~ Propagate information until convergence

T

e+ Cf € Cx Cf Cp s

AV

L

Semilattice for Constant
Propagation

foo

loadAI [bp-4] => r1
cbr r1 => 11, 12

11

12
}oadI © =>r2 loadI 10 => r2
jump 13
N ri: 1
5 r2: 10

storeAI r2 => [bp-4]

ri:. 1L
r2: 1

I Data-Flow Analysis

Define properties of interest for basic blocks
— Usually sets of blocks, variables, definitions, etc.
Define a formula for how those properties change within a block

- F(B) is based on F(A) where A is a predecessor or successor of B

— This is basically the meet operator for a particular problem
Specify initial information for all blocks

— Entry/exit blocks usually have special initial values

Run an iterative update algorithm to propagate changes
— Keep running until the properties converge for all basic blocks
Key concept: finite descending chain property

- Properties must be monotonically increasing or decreasing

— Otherwise, termination is not guaranteed

I Data-Flow Analysis

* This kind of algorithm is called fixed-point iteration
— It runs until it converges to a “fixed point”
 Forward vs. backward data-flow analysis

- Forward: along graph edges (based on predecessors)

- Backward: reverse of forward (based on successors)
* Particular data-flow analyses:

— Constant propagation
- Dominance

- Liveness

— Available expressions
— Reaching definitions

— Anticipable expressions

I Review: Set Theory

A.B

Dominance

* Block A dominates block B if Ais on every path from the entry to B
- Block Aimmediately dominates block B if there are no blocks between them
- Block B postdominates block A if B is on every path from A to an exit
- Every block both dominates and postdominates itself

 Simple dataflow analysis formulation

- preds(b) is the set of blocks that are immediate predecessors of block b

- Dom(b) is the set of blocks that dominate block b By
intersection of Dom for all immediate predecessors (p in preds(b)) 41’
- PostDom(b) is the set of blocks that postdominate block b / \
(similar definition using immediate successors)
/ \
Initial conditions: Dom/(entry) = {entry | \ /
Y b#entry, Dom(b)={all blocks | /

Updates: Dom(b)={b}U (M Dom(p) jf\ J

p€ preds(b)

Dominance example

Initial conditions: Dom(entry) = {entry}
Y b#entry, Dom(b) = {all blocks |

Updates: Dom(b)={blu () Dom(p)

p€Epreds(b)

foo
loadAI [bp-4] => r1
Dom(foo) = {foo} cbr r1 => 11, 12
Dom(1l1) = {foo, 11}
Dom(12) = {foo, 12}
Dom(13) = {foo, 13} u 12

loadl 5 => r2 loadI 10 => r2
jump 13

S~

storeAl r2 => [bp-4]

I LIveness

* Variable vis live at point p if there is a path from p to a use of v with no
Intervening assignment to v

— Useful for finding uninitialized variables (live at function entry)
— Useful for optimization (remove unused assignments)
— Useful for register allocation (keep live vars in registers)

e |nitial information: UEVar and VarKill

- UEVar(B): variables read in B before any corresponding write in B

* (“upwards exposed” variables)
- VarKill(B): variables that are written to (“killed”) in B

 Textbook notation note: X nY=X-Y
Initial conditions: ¥'b, LiveOut(b)= &

Updates: LiveOut(b)= |J UEVar(s)U (LiveOut(s)— VarKill(s))

s€succs(b)

Bp: i « 1 By
- By .
By: return I USRI
B;: g : Bez § ok ome /31\
Pl e
(a < ¢) = By,Bs (a < d) - Bg,Bg B; Bs
Ba: b « Bs: il A < \
3 : . y B‘}' B.ﬁ BS
—% By B7: b « ... \B /
— Bj 7
By: y <« a+b /
z <« c+d L R B;
1 4§ # 1 > _ I J
(i < 100) — By,Bs ' By
(a) Code for the Basic Blocks (b) Control-Flow Graph
UEVAR @ @] fa;b.e.d,i] B @ @ @
VARKILL (i} ({a.c} ({b,c,d} ez, 1] @ {a.d} {d} (b} {c]
(c) Initial Information
Vb, LiveOut(b)=8 LiveOut(b)= | J UEVar(s)U (LiveOut(s)— VarKill(s))

sesuccs(b)

I Alternative definition

e Define Liveln as well as LiveOut

- Two formulas for each basic block

- Makes things a bit simpler to reason about
e Separates change within block from change between blocks

Vb, Liveln(b)= @, LiveOut(b)= &
LiveIn(b) = UEVar (b) U (LiveOut (b) — VarKill (b))

LiveOut(b)= U Liveln(s)

sesuccs(b)

Liveness example

Vb, Liveln(b)= &, LiveOut(b)= @

LiveIn(b) = UEVar(b) U (LiveOut (b) — VarKill (b))

LiveOut(b) = | Liveln(s) UEVar (f00)
s€succs(b) fo0 VarKill(foo)

loadAI [bp-4] => r1
cbr ri1 => 11, 12

{ri}

LiveIn (foo) = {}
LiveOut(foo) = {} UEvar(11) = {} UEvar(12) = {}
varkill(11) = {r2} varkill(12) = {r2}
LiveIn (11) = {} 11 12
LiveOut(l1) = {r2} loadI 5 => r2 Toadl 10 == r2
jump 13 _
LiveIn (12) = {}
LiveOut(1l2) = {r2}
_ 13
L;veIrl (13) = {r2} storeAl r2 => [bp-4]
LiveOut(13) = {}
UEVar (13) = {r2}
varkill(13) = {}

I Block orderings

* Forwards dataflow analyses converge faster with reverse postorder
processing of CFG blocks

— Visit as many of a block’s predecessors as possible before visiting that block
- Strict reversal of normal postorder traversal

— Similar to concept of topological sorting on DAGs

— NOT EQUIVALENT to preorder traversal!

- Backwards analyses should use reverse postorder on reverse CFG

o Depth-first search: Valid postorderings:
A, B, D, B, A, C, A (left first) D, B, C, A (left first)
A, C, D, C, A, B, A (right first) D, C, B, A (right first)

o A, B, D, C (left first) A C/B,D
A, C, D, B (right first) A BC,D

Valid preorderings: Valid reverse postorderings:

Dom(entry) = {entry }

YV b#entry, Dom(b)= {all blocks | Dominance
Dom(b)={blu (1 Dom(p)
pEpreds(b)

Vb, LiveOut(b)= &

LiveOut(b)= |J UEVar(s)U (LiveOut(s) — VarKill(s)) (é_;\clilgregsosn)

s€succs(b)

Vb, Liveln(b)= £, LiveOut(b)= &
LiveIn(b) = UEVar(b) U (LiveOut (b) — VarKill (b)) Ore e)
LiveOut(b)= | Liveln(s)

s€succs(b)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

