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Compilers

int main() {
    int x
      = 4 + 5;
    return x;
}

Source code Tokens Syntax tree
Checked AST
+ Symtables

Lexing
(P2)

Parsing
(P3)

Analysis
(P4)

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

✓

✓ ✓

✓ ✓

main:
  loadI 4 => r1
  loadI 5 => r2
  add r1, r2 => r3
  i2i r3 => RET

Linear IR

main:
  loadI 4 => r1
  addI r1, 5 => RET

Optimized
Linear IR

IR Code Gen
(P5)

Optimization
Passes

Machine
Code Gen

Current
focus



  

Optimization

    int a;
    a = 0;
    while (a < 10) {
        a = a + 1;
    }

  loadI 0 => r1
  storeAI r1 => [bp-4]
l1:
  loadAI [bp-4] => r2
  loadI 10 => r3
  cmp_LT r2, r3 => r4
  cbr r4 => l2, l3
l2:
  loadAI [bp-4] => r5
  loadI 1 => r6
  add r5, r6 => r7
  storeAI r7 => [bp-4]
  jump l1
l3:

  loadI 0 => r1
  loadI 10 => r2
l1:
  cmp_LT r1, r2 => r4
  cbr r4 => l2, l3
l2:
  addI r1, 1 => r1
  jump l1
l3:
  storeAI r1 => [bp-4]

  loadI 10 => r1
  storeAI r1 => [bp-4]



  

Optimization is Hard

● Problem: it's hard to reason about all possible executions

– Preconditions and inputs may differ

– Optimizations should be correct and efficient in all cases

● Optimization tradeoff: investment vs. payoff

– "Better than naïve" is fairly easy

– "Optimal" is impossible

– Real world: somewhere in between

● Better speedups with more static analysis
● Usually worth the added compile time

● Also: linear IRs (e.g., ILOC) don't explicitly expose control flow

– This makes analysis and optimization difficult

– Need to re-introduce some representation of possible control flow



  

Aside: Verifying Returns in P3

● Is is tempting to try to verify that functions end with a return 
statement in P3, but this is not possible with a naive approach

● Consider cases like this:

def int foo(bool x)
{
    // other code here

    if (x) {
        return 5;
    } else {
        return 10;
    }
}

This is guaranteed to be safe 
(every path has a return 
statement) but requires non-
trivial, non-local static analysis to 
verify (i.e., can’t just check the 
last statement in the function)



  

Control-Flow Graphs

● Basic blocks
– "Maximal-length sequence of branch-free code"

– "Atomic" sequences (instructions that always execute together)

● Control-flow graph (CFG)  (note overloaded acronym)

– Nodes/vertices for basic blocks

– Edges for control transfer
● Branch/jump instructions (explicit) or fallthrough (implicit)
● p is a predecessor of q if there is a path from p to q

– p is an immediate predecessor if there is an edge directly from p to q
● q is a successor of p if there is a path from p to q

– q is an immediate successor if there is an edge directly from p to q



  

Control-Flow Graphs

● Conversion: linear IR to CFG

– Find leaders (initial instruction of a basic block) and build blocks
● In ILOC, every call or jump target is a leader

– Add edges between blocks based on jumps/branches and fallthrough

– Complicated by indirect jumps (none in our ILOC!)

foo:
  loadAI [bp-4] => r1
  cbr r1 => l1, l2
l1:
  loadI 5 => r2
  jump l3
l2:
  loadI 10 => r2
l3:
  storeAI r2 => [bp-4]

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2
jump l3

loadI 10 => r2

storeAI r2 => [bp-4]

foo

l1 l2

l3



  

Static CFG Analysis

● Single block analysis is easy, and trees are too
● General CFGs are harder

– Which branch of a conditional will execute?
– How many times will a loop execute?

● How do we handle this?
– One method: iterative data-flow analysis
– Simulate all possible paths through a region of code
– “Meet-over-all-paths” conservative solution
– Meet operator combines information across paths



  

Semilattices

● In general, a semilattice is a set of values L, special values  ⊤
(top) and  (⊥ bottom), and a meet operator ^ such that

– a ≥ b iff a ^ b = b

– a > b iff a ≥ b and a ≠ b

– a ^  = a  for all a  L⊤ ∈

– a ^  = ⊥ ⊥  for all a  L∈

● Partial ordering

– Monotonic

Figure 9.22 from Dragon book: semilattice of 
definitions using U (set union) as the meet operation



  

Constant propagation

● For sparse simple constant propagation (SSCP), the 
lattice is very shallow
– c

i
 ^  = c⊤

i
  for all c

i

– c
i
 ^  =   for all c⊥ ⊥

i

– c
i
 ^ c

j
 = c

i
 if c

i
 = c

j

– c
i
 ^ c

j
 =  if c⊥

i
 ≠ c

j

● Basically: each SSA value is either unknown ( ), a known ⊤
constant (c

i
), or it is a variable ( )⊥

– Initialize to unknown ( ) for all SSA values⊤
– Interpret operations over lattice values (always lowering)
– Propagate information until convergence



  

Constant propagation example

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2
jump l3

loadI 10 => r2

storeAI r2 => [bp-4]

r1: ⊤
r2: ⊤

r1: ⊥
r2: ⊤

r1: ⊥
r2: 5

r1: ⊥
r2: 10

r1: ⊥
r2: ⊥

foo

l1 l2

l3



  

Data-Flow Analysis

● Define properties of interest for basic blocks

– Usually sets of blocks, variables, definitions, etc.

● Define a formula for how those properties change within a block

– F(B) is based on F(A) where A is a predecessor or successor of B

– This is basically the meet operator for a particular problem

● Specify initial information for all blocks

– Entry/exit blocks usually have special initial values

● Run an iterative update algorithm to propagate changes

– Keep running until the properties converge for all basic blocks

● Key concept: finite descending chain property

– Properties must be monotonically increasing or decreasing

– Otherwise, termination is not guaranteed



  

Data-Flow Analysis

● This kind of algorithm is called fixed-point iteration

– It runs until it converges to a “fixed point”

● Forward vs. backward data-flow analysis

– Forward: along graph edges (based on predecessors)

– Backward: reverse of forward (based on successors)

● Particular data-flow analyses:

– Constant propagation

– Dominance

– Liveness

– Available expressions

– Reaching definitions

– Anticipable expressions



  

Review: Set Theory

A B A B

B ∩ A = B - A

A ∩ BA  B∪

A

A



  

Dominance

● Block A dominates block B if A is on every path from the entry to B

– Block A immediately dominates block B if there are no blocks between them

– Block B postdominates block A if B is on every path from A to an exit

– Every block both dominates and postdominates itself

● Simple dataflow analysis formulation

– preds(b) is the set of blocks that are immediate predecessors of block b

– Dom(b) is the set of blocks that dominate block b
● intersection of Dom for all immediate predecessors (p in preds(b))

– PostDom(b) is the set of blocks that postdominate block b
● (similar definition using immediate successors)

Updates : Dom(b) = {b }∪ ∩
p∈ preds(b)

Dom(p)

Initial conditions : Dom(entry ) = {entry }

∀ b≠entry , Dom (b) = {all blocks }



  

Dominance example

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2
jump l3

loadI 10 => r2

storeAI r2 => [bp-4]

Dom(foo) = {foo}
Dom(l1)  = {foo, l1}
Dom(l2)  = {foo, l2}
Dom(l3)  = {foo, l3}

Updates : Dom(b) = {b }∪ ∩
p∈preds(b)

Dom( p)

Initial conditions : Dom(entry ) = {entry }
∀ b≠entry , Dom(b) = {all blocks }

foo

l1 l2

l3



  

Liveness

● Variable v is live at point p if there is a path from p to a use of v with no 
intervening assignment to v

– Useful for finding uninitialized variables (live at function entry)

– Useful for optimization (remove unused assignments)

– Useful for register allocation (keep live vars in registers)

● Initial information: UEVar and VarKill

– UEVar(B): variables read in B before any corresponding write in B

● (“upwards exposed” variables)

– VarKill(B): variables that are written to (“killed”) in B

● Textbook notation note:  X ∩ Y = X - Y

Updates : LiveOut (b) = ∪
s∈succs (b)

UEVar(s) ∪ (LiveOut (s) − VarKill(s))

Initial conditions : ∀ b, LiveOut (b) = ∅



  

Liveness example

LiveOut (b) = ∪
s∈succs (b)

UEVar(s) ∪ (LiveOut (s) − VarKill(s))∀ b, LiveOut (b) = ∅



  

Alternative definition

● Define LiveIn as well as LiveOut
– Two formulas for each basic block
– Makes things a bit simpler to reason about

● Separates change within block from change between blocks

LiveIn(b) = UEVar (b) ∪ (LiveOut (b) − VarKill (b))

LiveOut (b) = ∪
s∈succs (b)

LiveIn(s)

∀ b , LiveIn(b) = ∅ , LiveOut (b) = ∅



  

Liveness example

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2
jump l3

loadI 10 => r2

storeAI r2 => [bp-4]

LiveIn (foo) = {}
LiveOut(foo) = {}

LiveIn (l1)  = {}
LiveOut(l1)  = {r2}

LiveIn (l2)  = {}
LiveOut(l2)  = {r2}

LiveIn (l3)  = {r2}
LiveOut(l3)  = {}

foo

l1 l2

l3

LiveIn(b) = UEVar(b) ∪ (LiveOut (b) − VarKill(b))

LiveOut (b) = ∪
s∈succs (b)

LiveIn(s)

∀ b , LiveIn(b) = ∅ , LiveOut (b) = ∅

UEVar(foo)   = {}
VarKill(foo) = {r1}

UEVar(l1)   = {}
VarKill(l1) = {r2}

UEVar(l2)   = {}
VarKill(l2) = {r2}

UEVar(l3)   = {r2}
VarKill(l3) = {}



  

Block orderings

● Forwards dataflow analyses converge faster with reverse postorder 
processing of CFG blocks
– Visit as many of a block’s predecessors as possible before visiting that block

– Strict reversal of normal postorder traversal

– Similar to concept of topological sorting on DAGs

– NOT EQUIVALENT to preorder traversal!

– Backwards analyses should use reverse postorder on reverse CFG

Valid preorderings:

A, B, D, C (left first)
A, C, D, B (right first)

Valid postorderings:

D, B, C, A (left first)
D, C, B, A (right first)

Valid reverse postorderings:

A, C, B, D
A, B, C, D

Depth-first search:

A, B, D, B, A, C, A (left first)
A, C, D, C, A, B, A (right first)



  

Summary

LiveIn(b) = UEVar(b) ∪ (LiveOut (b) − VarKill(b))

LiveOut (b) = ∪
s∈succs (b)

LiveIn(s)

LiveOut (b) = ∪
s∈succs(b)

UEVar (s) ∪ (LiveOut (s) − VarKill (s))

∀ b , LiveOut (b) = ∅

Dom(b) = {b }∪ ∩
p∈preds (b)

Dom( p )

Dom(entry ) = {entry }

∀ b≠entry , Dom(b) = {all blocks } Dominance

Liveness
(EAC version)

Liveness
(Dragon version)

∀ b , LiveIn(b) = ∅ , LiveOut (b) = ∅
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