

CS 432
Fall 2024

Mike Lam, Professor

Runtime Environments

Runtime Environment

● Programs run in the context of a system
– Instructions, registers, memory, I/O ports, etc.

● Compilers must emit code that uses this system
– Must obey the rules of the hardware and OS

– Must be interoperable with shared libraries compiled by a
different compiler

● Memory conventions:
– Stack (used for procedure calls)

– Heap (used for dynamic memory allocation)

Procedures

● A procedure is a portion of code packaged for re-use

– Key abstraction in software development

– Provides modularity, encapsulation, and information hiding

● Common characteristics

– Single entry point, (potentially) multiple exit points

– Caller is suspended while procedure is executing

– Control returns to caller when procedure completes

– Caller and callee info stored on stack

● Procedure vs. function vs. method

– We’ll use “subprogram” as a synonym for “procedure”

– Functions generally have return values

– Methods have an associated object (the receiver)

Procedures

● New-ish terms

– Header: signaling syntax for defining a procedure

– Parameter profile: number, types, and order of parameters

– Signature/protocol: parameter types and return type(s)

– Prototype: declaration without a full definition

– Referencing environment: variables visible inside a procedure

– Name space / scope: set of visible names

– Aliases: different names for the same location

– Caller: procedure that calls another procedure

– Callee: procedure called by another procedure

– Call site: location of a procedure invocation

– Return address: destination in caller after call completes

Parameters

● Formal vs. actual parameters

– Formal: parameter inside procedure definition

– Actual: parameter at call site

● Semantic models: in, out, in-out

● Implementations (key differences are when values are copied and
exactly what is being copied)

– Pass-by-value (in, value)

– Pass-by-result (out, value)

– Pass-by-copy (in-out, value)

– Pass-by-reference (in-out, reference)

– Pass-by-name (in-out, name)

Parameters

● Pass-by-value

– Pro: simple

– Con: costs of allocation and copying

– Often the default

● Pass-by-reference

– Pro: efficient (only copy 32/64 bits)

– Con: hard to reason about, extra layer of indirection, aliasing issues

– Often used in object-oriented languages

Procedure Activation

● Caller and callee must agree on calling conventions
● Standard calling contract:

– Caller: precall sequence
● Evaluate and store parameters
● Save return address
● Transfer control to callee

– Callee: prologue sequence
● Save & initialize base pointer
● Allocate space for local variables

– Callee: epilogue sequence
● De-allocate activation record
● Transfer control back to caller

– Caller: postreturn sequence
● Clean up parameters

Prologue

Precall

Postreturn

Epilogue

Prologue

Epilogue

Caller

Callee

General Stack Layout

● Stack pointer (SP)
– Top of stack (lowest address)

● Base pointer (BP)
– Start of current frame (i.e., saved BP)

– rarp in EAC (CS 432)

– EP in Sebesta (CS 430)

● Stack frame / activation record per call
– Parameters

● Positive offset from BP

– Saved return address (required)

– Saved BP (dynamic link)

– Local variables
● Negative offset from BP
● Allocated by decrementing SP

void foo()
{
 int a,b;
 bar(a)
 return;
}

foo return IP

saved BP (main)

foo local a

foo local b

bar param x (foo a)

bar return IP

saved BP (foo)

bar local c

baz param y (bar c)

baz param x (bar x)

main return IP

saved BP (bar)

baz local d

...

stack
growth

main
frame

foo
frame

bar
frame

void bar(x)
{
 int c;
 baz(x,c);
 return;
}

void baz(x,y)
{
 int d;
 return;
}

baz
BP

bar
BP

foo
BP

baz
frame

higher
addresses

Calling Conventions

Integral
parameters

Base pointer Caller-saved
registers

Return
value

cdecl (x86) On stack (RTL) Always saved EAX, ECX, EDX EAX

x86-64 (x64) RDI, RSI, RDX,
RCX, R8, R9,
then on stack
(RTL)

Saved only if
necessary

RAX, RCX, RDX,
R8-R11

RAX

ILOC On stack (RTL) Always saved All virtual registers RET

x86 Calling Conventions
Prologue:
 push %ebp ; save old base pointer
 mov %esp, %ebp ; save top of stack as base pointer
 sub X, %esp ; reserve X bytes for local vars

Within function:
 +OFFSET(%ebp) ; function parameter
 -OFFSET(%ebp) ; local variable

Epilogue:
 <optional: save return value in %eax>
 mov %ebp, %esp ; restore old stack pointer
 pop %ebp ; restore old base pointer
 ret ; pop stack and jump to popped address

Function calling:
 <push parameters> ; precall
 call <fname> ; save return address and jump
 <dealloc parameters> ; postreturn

Much of prologue & epilogue is optional in x86-64

ILOC Calling Conventions
Prologue:
 push BP ; save old base pointer
 i2i SP => BP ; save top of stack as base pointer
 addI SP, -X => SP ; reserve X bytes for local vars

Within function:
 [BP+OFFSET] ; function parameter
 [BP-OFFSET] ; local variable

Epilogue:
 <optional: save return value in RET>
 i2i BP => SP ; restore old stack pointer
 pop BP ; restore old base pointer
 return ; pop stack and jump to popped address

Function calling:
 <push parameters> ; precall
 call <fname> ; save return address and jump
 <dealloc parameters> ; postreturn

Described in detail in section 8 of Decaf reference

(required even if there are no local vars – X may need to be
adjusted during register allocation for spilled registers)

Example

def void foo()
{
}

def int main()
{
 foo();
 return 0;
}

foo:
 push BP ; prologue
 i2i SP => BP ;
 addI SP, 0 => SP ;
l0:
 i2i BP => SP ; epilogue
 pop BP ;
 return ;

main:
 push BP ; prologue
 i2i SP => BP ;
 addI SP, 0 => SP ;
 call foo
 addI SP, 0 => SP
 loadI 0 => r0
 i2i r0 => RET
 jump l1
l1:
 i2i BP => SP ; epilogue
 pop BP ;
 return ;

Example
def int add(int x, int y)
{
 int sum;
 sum = x + y;
 return sum;
}

def int main()
{
 return add(3, 7);
}

add:
 push BP ; prologue
 i2i SP => BP ;
 addI SP, -8 => SP ;
 loadAI [BP+16] => r0 ; load param x
 loadAI [BP+24] => r1 ; load param y
 add r0, r1 => r2
 storeAI r2 => [BP-8] ; store local sum
 loadAI [BP-8] => r3 ; load local sum
 i2i r3 => RET
 jump l0
l0:
 i2i BP => SP ; epilogue
 pop BP ;
 return ;

main:
 push BP ; prologue
 i2i SP => BP ;
 addI SP, 0 => SP ;
 loadI 3 => r4
 loadI 7 => r5
 push r5 ; precall
 push r4 ;
 call add
 addI SP, 16 => SP ; postreturn
 i2i RET => r6
 i2i r6 => RET
 jump l1
l1:
 i2i BP => SP ; epilogue
 pop BP ;
 return ;

PL Design Issues

● There are many procedure-related design questions; decisions are
made by language designers w/ impacts on compiler writers

● How are name spaces defined?

– Lexical (static) vs. dynamic scope

– Parent scope determined by code vs. call order

● How are formal/actual parameters associated?

– Positionally, by name, or both?

● Are parameter default values allowed?

– For all parameters or just the last one(s)?

● Are method parameters type-checked?

– Statically or dynamically?

PL Design Issues

● Can procedures be passed as parameters?

– How is this implemented? (e.g., with closures)

● Can procedures be nested?

– Lexical or dynamic scoping?

● Can procedures be polymorphic?

– Ad-hoc/manual, subtype, or parametric/generic?

● Can method calls be resolved at compile time?

– Static vs. dynamic dispatch (and single vs. multiple dispatch)

● Are function side effects allowed?

● Can a function return multiple values?

Object-Oriented Languages

● Classes vs. objects
● Inheritance relationships (subclass/superclass)

– Single vs. multiple inheritance

● Closed vs. open class structure
● Visibility: public vs. private vs. protected
● Static vs. dynamic dispatch (and single vs. multiple)
● Object-records and virtual method tables

Miscellaneous Topics

● Macros
– “Executed” at compile time

– Often provide call-by-name semantics

● Closures
– A procedure and its referencing environment

– Requires a more general structure than the stack

● Just-in-time (JIT) compilation
– Defer compilation of each function until it is called

– New chapter in EAC3e!

Heap Management

● Desired properties
– Space efficiency

– Exploitation of locality (time and space)

– Low overhead

● Allocation (malloc/new)
– First-fit vs. best-fit vs. next-fit

– Coalescing free space (defragmentation)

● Manual deallocation (free/delete)
– Dangling pointers

– Memory leaks

Automatic De-allocation

● Criteria: overhead, pause time, space usage, locality impact
● Basic problem: finding reachable structures

– Root set: static and stack pointers

– Recursively follow pointers through heap structures

● Reference counting (incremental)
– Memory/time overhead to track the number of active references to each structure

– Catch the transition to unreachable (count becomes zero)

– Has trouble with cyclic data structures

● Mark-sweep (batch-oriented)
– Occasionally pause and detect unreachable structures

– High time overhead and potentially undesirable "pause the world" semantics

– Partial collection: collect only a subset of memory on each run

– Generational collection: collect newer objects more often

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

