AN x64 PROCESSR 1S SCREAMING ALONG AT BILLONSOF
CYtLES FPER SECOND To RN THE XNU KERNEL, WHICH 1S

FRANTICALLY WORKING THROUGH ALL THE FOSIX-SHECIFIED

C S 43 2 ARSTRACTION T CREATE THE DRRUWIN SYSTEM UNDERIYING
05 X, WHICH IN TORN 1S STRAINING ITSELF T0 RN FIREFOX

AND IT5 GECKO RENDERER, WHICH CREATES A RASH OBTECT

Fa” 2024 WHICH RENDERS TOZENS OF VIDEQ FRANES EVERY SECOND

BECAUSE I WANTED TO SEE A CAT
JUMP INTD A BOX AND FALL OVER.

Mike Lam, Professor O fC! I AM A GOD.

Runtime Environments

I Runtime Environment

* Programs run in the context of a system
- Instructions, registers, memory, 1/O ports, etc.
* Compilers must emit code that uses this system

— Must obey the rules of the hardware and OS

— Must be interoperable with shared libraries compiled by a
different compiler

 Memory conventions:

— Stack (used for procedure calls)
- Heap (used for dynamic memory allocation)

I Procedures

A procedure is a portion of code packaged for re-use

Key abstraction in software development

Provides modularity, encapsulation, and information hiding

e Common characteristics

Single entry point, (potentially) multiple exit points
Caller is suspended while procedure is executing
Control returns to caller when procedure completes

Caller and callee info stored on stack

 Procedure vs. function vs. method

- We'll use “subprogram” as a synonym for “procedure”

Functions generally have return values

Methods have an associated object (the receiver)

I Procedures

* New-ish terms

- Header: signaling syntax for defining a procedure

- Parameter profile: number, types, and order of parameters

- Signature/protocol: parameter types and return type(s)

— Prototype: declaration without a full definition

- Referencing environment: variables visible inside a procedure
— Name space / scope: set of visible names

- Aliases: different names for the same location

— Caller: procedure that calls another procedure

— Callee: procedure called by another procedure

— Call site: location of a procedure invocation

- Return address: destination in caller after call completes

I Parameters

 Formal vs. actual parameters

- Formal: parameter inside procedure definition

- Actual: parameter at call site

e Semantic models: in, out, In-out

* Implementations (key differences are when values are copied and
exactly what is being copied)

- Pass-by-value (in, value)

- Pass-by-result (out, value)

- Pass-by-copy (in-out, value)

- Pass-by-reference (in-out, reference)

- Pass-by-name (in-out, name)

* Pass-by-value

- Pro: simple
— Con: costs of allocation and copying
- Often the default

* Pass-by-reference

- Pro: efficient (only copy 32/64 bits)
— Con: hard to reason about, extra layer of indirection, aliasing issues
— Often used in object-oriented languages

I Procedure Activation

* Caller and callee must agree on calling conventions

* Standard calling contract:

— Caller: precall sequence

* Evaluate and store parameters
* Save return address
* Transfer control to callee

— Callee: prologue sequence

e : Caller
* Save & initialize base pointer
. Prol
* Allocate space for local variables roigue Callee
— Callee: epilogue sequence precall ¥ Prologue
* De-allocate activation record #
Postreturn |— | Epilogue
* Transfer control back to caller *
— Caller: postreturn sequence Epilogue

* Clean up parameters

I General Stack Layout

growth

void foo() void bar(x) void baz(x,y)
¢ int b int int d
. int a,b; int c; in ;
e Stack pointer (SP) bar (a) baz(x, c); return;
return; return; }
- Top of stack (lowest address) ’ ’
. _ higher .
e Base pointer (BP) | addresses .,
main
— Start of current frame (i.e., saved BP) frame :
| Mmain return IP
rarp IN EAC (CS 432) saved BP (main) 1 fo0
. ~ BP
- EP in Sebesta (CS 430) oo f00 tocal a
¢ < foo local b :
. . rame
e Stack frame [activation record per call e ——
— Parameters foo return IP '
B saved BP (foo) -1 bar
* Positive offset from BP P — s 8P
— Saved return address (required) D21 L [Thaz paran y (bar o) |
- Saved BP (dynamic link) oz paren x Gt 9
_ bar return IP '
- Local Varlables baz saved BP (bar) i::'.'____ baz
* Negative offset from BP frame baz local d BP
e Allocated by decrementing SP stack l

Calling Conventions

Integral Base pointer | Caller-saved Return
parameters registers value
cdecl (x86) On stack (RTL) | Always saved | EAX, ECX, EDX EAX
x86-64 (x64) RDI, RSI, RDX, | Saved only if RAX, RCX, RDX, RAX
RCX, R8, R9, | necessary R8-R11
then on stack
(RTL)
ILOC On stack (RTL) | Always saved | All virtual registers | RET

Prologue:
push %ebp ;
mov %esp, %ebp ;
sub X, %esp ;

Within function:

+OFFSET (%ebp) ;
-OFFSET (%ebp) ;
Epilogue:

x86 Calling Conventions

save old base pointer
save top of stack as base pointer
reserve X bytes for local vars

function parameter
local variable

<optional: save return value in %eax>

mov %ebp, %esp ;
pop %ebp ’
ret ;

Function calling:
<push parameters> ;
call <fname> ;
<dealloc parameters> ;

restore old stack pointer
restore old base pointer
pop stack and jump to popped address

precall
save return address and jump
postreturn

Much of prologue & epilogue is optional in x86-64

I ILOC Calling Conventions

Prologue:
push BP ; save old base pointer
i21 SP => BP ; save top of stack as base pointer
addI SP, -X => SP ; reserve X bytes for local vars

(required even if there are no local vars — X may need to be
adjusted during register allocation for spilled registers)

Within function:

[BP+OFFSET] ; function parameter
[BP-OFFSET] ; Local variable
Epilogue:
<optional: save return value in RET>
i2i BP => SP ; restore old stack pointer
pop BP ; restore old base pointer
return ; pop stack and jump to popped address

Function calling:
<push parameters> ; precall
call <fname> ; save return address and jump
<dealloc parameters> ; postreturn

Described in detail in section 8 of Decaf reference

I Example

def void foo() foo:
{ push BP ; prologue
1 i2i SP => BP ;
addI SP, 0 => SP ;
def int main() o: |
{ 121 BP => SP ; epilogue
foo(); pop BP ;
return 0; return ;
b .
main:
push BP ; prologue
i2i SP => BP ;
addI SP, @ => SP ;
call foo

addI SP, 0 => SP
loadIl 0 => r0
121 r® => RET

jump 11

11:
121 BP => SP ; epilogue
pop BP ’

return ;

add:
push BP

I Example GR A

def
{

def

loadAI [BP+16] => r0

loadAI [BP+24] => r1
int add(int x, int vy) add ro, ri => r2
storeAIl r2 => [BP-8]
loadAI [BP-8] => r3

int sum; LOB

_) 121 r3 => RET
sum = X + VY, jump 10
return sum; 1o

i2i BP => SP

: . pop BP

int main() return

return add(3, 7); main:
push BP

i2i SP => BP

addI SP, 0 => SP

loadIl 3 => r4

loadIl 7 => r5

push r5

push r4

call add

addI SP, 16 => SP

121 RET => r6

i2i r6 => RET

jump 11

11:
i2i BP => SP
pop BP
return

NE= N= N= N= N=

prologue

load param X
load param y

store local sum

load local sum

epilogue

prologue

precall

postreturn

epilogue

I PL Design Issues

 There are many procedure-related design guestions; decisions are
made by language designers w/ impacts on compiler writers

 How are name spaces defined?

- Lexical (static) vs. dynamic scope

— Parent scope determined by code vs. call order

* How are formal/actual parameters associated?

- Positionally, by name, or both?

* Are parameter default values allowed?
- For all parameters or just the last one(s)?

* Are method parameters type-checked?

- Statically or dynamically?

I PL Design Issues

* Can procedures be passed as parameters?
- How is this implemented? (e.g., with closures)
e Can procedures be nested?
— Lexical or dynamic scoping?
* Can procedures be polymorphic?
- Ad-hoc/manual, subtype, or parametric/generic?
* Can method calls be resolved at compile time?
— Static vs. dynamic dispatch (and single vs. multiple dispatch)

e Are function side effects allowed?

* Can a function return multiple values?

I Object-Oriented Languages

* Classes vs. objects

Inheritance relationships (subclass/superclass)
- Single vs. multiple inheritance
* Closed vs. open class structure

 Visibility: public vs. private vs. protected
e Static vs. dynamic dispatch (and single vs. multiple)

Object-records and virtual method tables

I Miscellaneous Topics

e Macros

- “Executed” at compile time
— Often provide call-by-name semantics
* Closures
- A procedure and its referencing environment

- Requires a more general structure than the stack
e Just-in-time (JIT) compilation

- Defer compilation of each function until it is called
- New chapter in EAC3e!

I Heap Management

* Desired properties
- Space efficiency
— Exploitation of locality (time and space)
- Low overhead

e Allocation (malloc/new)

- First-fit vs. best-fit vs. next-fit
— Coalescing free space (defragmentation)

 Manual deallocation (free/delete)

- Dangling pointers
- Memory leaks

I Automatic De-allocation

* Criteria: overhead, pause time, space usage, locality impact
e Basic problem: finding reachable structures
- Root set: static and stack pointers
- Recursively follow pointers through heap structures
* Reference counting (incremental)
- Memory/time overhead to track the number of active references to each structure
— Catch the transition to unreachable (count becomes zero)
— Has trouble with cyclic data structures
 Mark-sweep (batch-oriented)
— Occasionally pause and detect unreachable structures
- High time overhead and potentially undesirable "pause the world" semantics
— Partial collection: collect only a subset of memory on each run

— Generational collection: collect newer objects more often

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

