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Code Generation

loadI 3 => r0
loadI 4 => r1
mult r0, r1 => r2
loadI 2 => r3
add r2, r3 => r4
print r4



  

Compilers

char data[20];

int main() {
    float x
      = 42.0;
    return 7;
}

Source code

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Optimizations &
Machine code gen &
Assembling/linking

"Back end"
Current
focus

Lexing &
Parsing &
Analysis

main:
  loadI 7 => RET

Linear IR code

Code Generation

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables



  

Compilers

● Current status: type-checked AST

● Next step: convert to ILOC
– This step is called code generation

– Convert from a tree-based IR to a linear IR
● Or directly to machine code (uncommon)
● Use a tree traversal to “linearize” the program

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...



  

Goals

● Linear codes
– Stack code (push a, push b, multiply, pop c)

– Three-address code (c = a + b)

– Machine code (movq a, %eax; addq b, %eax; movq %eax, c)

● Code generator requirements
– Must preserve semantics

– Should produce efficient code

– Should run efficiently



  

Obstacles

● Generating optimal code is undecidable
– Unlike front-end transformations

● (e.g., lexing & parsing)

– Must use heuristics and approximation algorithms
● Systems design involves trade-offs (e.g., speed for code size)
● Sometimes “best” choice depends on target architecture (ISA, 

cache sizes, etc.)

– This is why most compilers research since 1960s has 
been on the back end



  

ILOC

● Linear IR based on research compiler from Rice

● “Intermediate Language for an Optimizing Compiler”

main:
  loadI 3 => r0
  loadI 4 => r1
  add r0, r1 => r2
  i2i r2 => RET
  return

def int main()
{
    return 3+4;
}



  

ILOC

● Simple von Neumann architecture

– Not an actual hardware architecture, but useful for teaching

– 64-bit words w/ 64K address space

– Read-only code region indexed by instruction

– “Unlimited” 64-bit integer temporary virtual registers (r0, r1, r2, …)

● Practical limit of 2048 in reference interpreter

– Up to 32 integer general-purpose physical registers (R0, R1, R2, ...)

– Four special-purpose hardware registers:

● IP: instruction pointer

● SP: stack pointer

● BP: base pointer

● RET: return value

Stack

Data

Code

0x0

0xFFFF



  

ILOC

● See Appendix A (and P4 code/documentation)

● I have made some modifications to simplify P4

– Removed most immediate instructions (i.e., subI)

– Removed binary shift instructions

– Removed character-based instructions

– Removed jump tables

– Removed comparison-based conditional jumps

– Added stack operations push and pop

– Added labels and function call instructions call and return

– Added binary not and arithmetic neg

– Added print and nop instructions



  

ILOC



  

ILOC

x86-64:
cmpq %r2, %r1
jl L1
jmp L2

ILOC:
cmp_LT r1, r2 => rE
cbr rE => L1, L2



  

Syntax-Directed Translation

● Similar to attribute grammars (Figure 4.15)

● Create code-gen routine for each production

– Each routine generates code based on a template

– Save intermediate results in temporary registers

● In our project, we will use a visitor

– Still syntax-based (actually AST-based)

– Not dependent on original grammar

– Generate code as a synthesized attribute (“code”)

– Save temporary registers as another attribute (“reg”)

– Operational semantics rules describe this process formally

● Right arrow (→) means “generates” and a semicolon (;) means concatenation



  

Operational Semantics

● Expressions vs. statements

– Former need a temporary register to store results

– Generated sequentially using static virtual_register() call

– Denoted in semantics using <C, r> pairs

● C = “code” attribute

● r = “reg” attribute (temporary register)



  

Example

● Sample code:
print_int(2+3*4);

Decaf equivalent:

  loadI 2 => r0
  loadI 3 => r1
  loadI 4 => r2
  mult r1, r2 => r3
  add r0, r3 => r4
  print r4



  

Example

● Sample code:

  loadI 2 => r0 // Literal (2)
  loadI 3 => r1 // Literal (3)
  loadI 4 => r2 // Literal (4)
  mult r1, r2 => r3 // BinaryOp (*)
  add r0, r3 => r4 // BinaryOp (+)
  print r4 // FuncCall (print_int)

print_int(2+3*4);

Decaf equivalent:

BinOp (+)

Lit(2) BinOp (*)

Lit(4)Lit(3)

FuncCall (print_int)



  

Example

BinOp (+)

Lit(2) BinOp (*)

Lit(4)Lit(3)

2+3*4
Code:
  loadI 2 => r0
  loadI 3 => r1
  loadI 4 => r2
  mult r1, r2 => r3
  add r0, r3 => r4
Reg: r4

Code:
  loadI 3 => r1
  loadI 4 => r2
  mult r1, r2 => r3
Reg: r3

Code:
  loadI 3 => r1
Reg: r1

Code:
  loadI 4 => r2
Reg: r2

Code:
  loadI 2 => r0
Reg: r0



  

Boolean Encoding

● Integers: 0 for false, 1 for true

● Difference from book
– No comparison-based conditional branches

– Conditional branching uses boolean values instead

– This enables simpler code generation

● Short-circuiting
– Not in Decaf!



  

String Handling

● Arrays of chars vs. encapsulated type
– Former is faster, latter is easier/safer

– C uses the former, Java uses the latter

● Mutable vs. immutable
– Former is more intuitive, latter is (sometimes) faster

– C uses the former, Java uses the latter

● Decaf: immutable string constants only
– No string variables



  

Variables

● Global: access using static address

– Load address into temporary base register first (zero offset)

● Local: access using offset from base pointer (BP)

– For ILOC, 8-byte slots starting at [bp-8] (so [bp-16], [bp-24], etc.)

– Assume we can look up base register and constant offset

int a; int b; int c;
…
c = a + b;

  loadAI [bp-8] => r0
  loadAI [bp-16] => r1
  add r0, r1 => r2
  storeAI r2 => [bp-24]



  

Array Accesses

● 1-dimensional case:  base + size * i

● Generalization for multiple dimensions:
– base + (i_1 * n_1) + (i_2 * n_2) + ... + (i_k * n_k)

● Alternate definition:

– 1d: base + size * (i_1)

– 2d: base + size * (i_1 * n_2 + i_2)

– nd: base + size * (( ... ((i_1 * n_2 + i_2) * n_3 + i_3) ... ) * n_k + i_k)

● Row-major vs. column-major

● In Decaf: row-major one-dimensional global arrays



  

Struct and Record Types

● Access fields using static offsets from base of struct

● OO adds another level of complexity
– Must include storage for inherited fields

– Must handle dynamic dispatch for method calls

– Class instance records and virtual method tables

– Some of this complexity is covered in CS 430

● In Decaf: no structs or classes



  

Control Flow

● Introduce labels

– Named locations in the program

– Generated sequentially using static anonymous_label() call

● Generate jumps/branches using code templates

– Similar to do-while, jump-to-middle, and guarded-do from CS 261

– In ILOC: “cbr” instruction (no fallthrough!)
● So the CS 261 templates won’t work verbatim

– Templates are composable

– Operational semantics rules describe these templates

– Concatenate code, labels, and jumps



  

Control Flow

if statement: if (E) B1

        rE = << E code >>

        cbr rE → l1, l2

    l1:

        << B1 code >>

    l2:



  

Control Flow

if statement: if (E) B1 else B2

        rE = << E code >>

        cbr rE → l1, l2

    l1:

        << B1 code >>

        jmp l3

    l2:

        << B2 code >>

    l3:



  

Control Flow

while loop: while (E) B



  

Control Flow

while loop: while (E) B

    cond:

        rE = << E code >>

        cbr rE → body, done

    body:

        << B code >>

        jmp cond

    done:



  

Control Flow

while loop: while (E) B

    l1:                         ; CONTINUE target

        rE = << E code >>

        cbr rE → l2, l3

    l2:

        << B code >>

        jmp l1

    l3:                         ; BREAK target



  

Control Flow

for loop: for V in E1, E2 B

        rX = << E1 code >>

        rY = << E2 code >>

        rV = rX

    l1:

        cmp_GE rV, rY → rC

        cbr rC → l3, l2

    l2:

        << B code >>

        rV = rV + 1               ; CONTINUE target

        jmp cond

    l3:                           ; BREAK target

NOT CURRENTLY
IN DECAF



  

Control Flow

switch statement:
    switch (E) {
        case V1:    B1
        case V2:    B2
        default:    BD
    }

        rE = << E code >>
        if rE == V1 goto l1
        if rE == V2 goto l2
        << BD code >>
        jmp l3
    l1:
        << B1 code >>
        jmp l3
    l2:
        << B2 code >>
        jmp l3
    l3:

NOT CURRENTLY
IN DECAF



  

Control Flow

For sequential values starting with constant:

    ("jump table")

        rE = << E code >>

        jmp (jt+rE)

    jt: jmp l1

        jmp l2

    (...)



  

SSA Form

● Static single-assignment

– Unique name for each newly-calculated value

– Values are collapsed at control flow points using Φ-functions

● Useful for various types of analysis

● Φ-functions have no actual effect at runtime

– We’ll generate ILOC in SSA for P4

● Unique temporary register for each newly-calculated value

● No need for Φ-functions because we’ll store to memory at every assignment

cmp_LT r1, r2 → r3
cbr r3 → l1, l2

l1:
  loadI 4 → r4
  jmp l3

l2:
  loadI 8 → r5
  jmp l3

l3:
  r6 = Φ(r4, r5)

if (a < b) {
    c = 4;
} else {
    c = 8;
}



  

Procedure Calls

● Procedures are harder
– (recall x86-64 calling conventions from CS 261)

– Need rules for control transfer, parameter passing, return 
values, and register usage

● Usually specified by an application binary interface (ABI)

– We'll cover all of this next week

Prologue

Precall

Postreturn

Epilogue

Prologue

Epilogue

Caller

Callee



  

Reading Topics

● 4.4: Ad hoc syntax-directed translation

– General concept of AST-based translation

● 5.3: Linear IRs

● 5.4: Mapping values to names

– Intro to static single-assignment (SSA) form

● 7.1-7.5, 7.8: Basic code generation

– Data storage, arithmetic, booleans/conditionals, arrays

– Control flow constructs

– Parts needed for Decaf

● 7.6-7.7: Code gen for strings and structures

– Not needed for Decaf



  

Allocating Symbols (pre-P4)

● Walk the AST, allocating memory for symbols
– Each symbol has a location and offset field

● This is a form of static coordinates
● STATIC_VAR and static offset for global variables
● STACK_LOCAL and BP offset for local variables
● STACK_PARAM and BP offset for function parameters

– Track allocated memory
● localSize attribute for each FuncDecl
● staticSize attribute for the Program



  

Code Generation (P4)

● Walk the AST, generating code
– Build ILOC instructions for all nodes

● Refer to operational semantics (section 7 of language 
reference)

● Store in “code” attribute
● May require copying “code” attribute of children

– Store expression results in temporary registers
● Use “reg” attribute
● Need state information to track the next temporary IDs
● Location loads and stores will require static coordinate info
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