

CS 432
Fall 2024

Mike Lam, Professor

Code Generation

loadI 3 => r0
loadI 4 => r1
mult r0, r1 => r2
loadI 2 => r3
add r2, r3 => r4
print r4

Compilers

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Optimizations &
Machine code gen &
Assembling/linking

"Back end"
Current
focus

Lexing &
Parsing &
Analysis

main:
 loadI 7 => RET

Linear IR code

Code Generation

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

Compilers

● Current status: type-checked AST

● Next step: convert to ILOC
– This step is called code generation

– Convert from a tree-based IR to a linear IR
● Or directly to machine code (uncommon)
● Use a tree traversal to “linearize” the program

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Goals

● Linear codes
– Stack code (push a, push b, multiply, pop c)

– Three-address code (c = a + b)

– Machine code (movq a, %eax; addq b, %eax; movq %eax, c)

● Code generator requirements
– Must preserve semantics

– Should produce efficient code

– Should run efficiently

Obstacles

● Generating optimal code is undecidable
– Unlike front-end transformations

● (e.g., lexing & parsing)

– Must use heuristics and approximation algorithms
● Systems design involves trade-offs (e.g., speed for code size)
● Sometimes “best” choice depends on target architecture (ISA,

cache sizes, etc.)

– This is why most compilers research since 1960s has
been on the back end

ILOC

● Linear IR based on research compiler from Rice

● “Intermediate Language for an Optimizing Compiler”

main:
 loadI 3 => r0
 loadI 4 => r1
 add r0, r1 => r2
 i2i r2 => RET
 return

def int main()
{
 return 3+4;
}

ILOC

● Simple von Neumann architecture

– Not an actual hardware architecture, but useful for teaching

– 64-bit words w/ 64K address space

– Read-only code region indexed by instruction

– “Unlimited” 64-bit integer temporary virtual registers (r0, r1, r2, …)

● Practical limit of 2048 in reference interpreter

– Up to 32 integer general-purpose physical registers (R0, R1, R2, ...)

– Four special-purpose hardware registers:

● IP: instruction pointer

● SP: stack pointer

● BP: base pointer

● RET: return value

Stack

Data

Code

0x0

0xFFFF

ILOC

● See Appendix A (and P4 code/documentation)

● I have made some modifications to simplify P4

– Removed most immediate instructions (i.e., subI)

– Removed binary shift instructions

– Removed character-based instructions

– Removed jump tables

– Removed comparison-based conditional jumps

– Added stack operations push and pop

– Added labels and function call instructions call and return

– Added binary not and arithmetic neg

– Added print and nop instructions

ILOC

ILOC

x86-64:
cmpq %r2, %r1
jl L1
jmp L2

ILOC:
cmp_LT r1, r2 => rE
cbr rE => L1, L2

Syntax-Directed Translation

● Similar to attribute grammars (Figure 4.15)

● Create code-gen routine for each production

– Each routine generates code based on a template

– Save intermediate results in temporary registers

● In our project, we will use a visitor

– Still syntax-based (actually AST-based)

– Not dependent on original grammar

– Generate code as a synthesized attribute (“code”)

– Save temporary registers as another attribute (“reg”)

– Operational semantics rules describe this process formally

● Right arrow (→) means “generates” and a semicolon (;) means concatenation

Operational Semantics

● Expressions vs. statements

– Former need a temporary register to store results

– Generated sequentially using static virtual_register() call

– Denoted in semantics using <C, r> pairs

● C = “code” attribute

● r = “reg” attribute (temporary register)

Example

● Sample code:
print_int(2+3*4);

Decaf equivalent:

 loadI 2 => r0
 loadI 3 => r1
 loadI 4 => r2
 mult r1, r2 => r3
 add r0, r3 => r4
 print r4

Example

● Sample code:

 loadI 2 => r0 // Literal (2)
 loadI 3 => r1 // Literal (3)
 loadI 4 => r2 // Literal (4)
 mult r1, r2 => r3 // BinaryOp (*)
 add r0, r3 => r4 // BinaryOp (+)
 print r4 // FuncCall (print_int)

print_int(2+3*4);

Decaf equivalent:

BinOp (+)

Lit(2) BinOp (*)

Lit(4)Lit(3)

FuncCall (print_int)

Example

BinOp (+)

Lit(2) BinOp (*)

Lit(4)Lit(3)

2+3*4
Code:
 loadI 2 => r0
 loadI 3 => r1
 loadI 4 => r2
 mult r1, r2 => r3
 add r0, r3 => r4
Reg: r4

Code:
 loadI 3 => r1
 loadI 4 => r2
 mult r1, r2 => r3
Reg: r3

Code:
 loadI 3 => r1
Reg: r1

Code:
 loadI 4 => r2
Reg: r2

Code:
 loadI 2 => r0
Reg: r0

Boolean Encoding

● Integers: 0 for false, 1 for true

● Difference from book
– No comparison-based conditional branches

– Conditional branching uses boolean values instead

– This enables simpler code generation

● Short-circuiting
– Not in Decaf!

String Handling

● Arrays of chars vs. encapsulated type
– Former is faster, latter is easier/safer

– C uses the former, Java uses the latter

● Mutable vs. immutable
– Former is more intuitive, latter is (sometimes) faster

– C uses the former, Java uses the latter

● Decaf: immutable string constants only
– No string variables

Variables

● Global: access using static address

– Load address into temporary base register first (zero offset)

● Local: access using offset from base pointer (BP)

– For ILOC, 8-byte slots starting at [bp-8] (so [bp-16], [bp-24], etc.)

– Assume we can look up base register and constant offset

int a; int b; int c;
…
c = a + b;

 loadAI [bp-8] => r0
 loadAI [bp-16] => r1
 add r0, r1 => r2
 storeAI r2 => [bp-24]

Array Accesses

● 1-dimensional case: base + size * i

● Generalization for multiple dimensions:
– base + (i_1 * n_1) + (i_2 * n_2) + ... + (i_k * n_k)

● Alternate definition:

– 1d: base + size * (i_1)

– 2d: base + size * (i_1 * n_2 + i_2)

– nd: base + size * ((... ((i_1 * n_2 + i_2) * n_3 + i_3) ...) * n_k + i_k)

● Row-major vs. column-major

● In Decaf: row-major one-dimensional global arrays

Struct and Record Types

● Access fields using static offsets from base of struct

● OO adds another level of complexity
– Must include storage for inherited fields

– Must handle dynamic dispatch for method calls

– Class instance records and virtual method tables

– Some of this complexity is covered in CS 430

● In Decaf: no structs or classes

Control Flow

● Introduce labels

– Named locations in the program

– Generated sequentially using static anonymous_label() call

● Generate jumps/branches using code templates

– Similar to do-while, jump-to-middle, and guarded-do from CS 261

– In ILOC: “cbr” instruction (no fallthrough!)
● So the CS 261 templates won’t work verbatim

– Templates are composable

– Operational semantics rules describe these templates

– Concatenate code, labels, and jumps

Control Flow

if statement: if (E) B1

 rE = << E code >>

 cbr rE → l1, l2

 l1:

 << B1 code >>

 l2:

Control Flow

if statement: if (E) B1 else B2

 rE = << E code >>

 cbr rE → l1, l2

 l1:

 << B1 code >>

 jmp l3

 l2:

 << B2 code >>

 l3:

Control Flow

while loop: while (E) B

Control Flow

while loop: while (E) B

 cond:

 rE = << E code >>

 cbr rE → body, done

 body:

 << B code >>

 jmp cond

 done:

Control Flow

while loop: while (E) B

 l1: ; CONTINUE target

 rE = << E code >>

 cbr rE → l2, l3

 l2:

 << B code >>

 jmp l1

 l3: ; BREAK target

Control Flow

for loop: for V in E1, E2 B

 rX = << E1 code >>

 rY = << E2 code >>

 rV = rX

 l1:

 cmp_GE rV, rY → rC

 cbr rC → l3, l2

 l2:

 << B code >>

 rV = rV + 1 ; CONTINUE target

 jmp cond

 l3: ; BREAK target

NOT CURRENTLY
IN DECAF

Control Flow

switch statement:
 switch (E) {
 case V1: B1
 case V2: B2
 default: BD
 }

 rE = << E code >>
 if rE == V1 goto l1
 if rE == V2 goto l2
 << BD code >>
 jmp l3
 l1:
 << B1 code >>
 jmp l3
 l2:
 << B2 code >>
 jmp l3
 l3:

NOT CURRENTLY
IN DECAF

Control Flow

For sequential values starting with constant:

 ("jump table")

 rE = << E code >>

 jmp (jt+rE)

 jt: jmp l1

 jmp l2

 (...)

SSA Form

● Static single-assignment

– Unique name for each newly-calculated value

– Values are collapsed at control flow points using Φ-functions

● Useful for various types of analysis

● Φ-functions have no actual effect at runtime

– We’ll generate ILOC in SSA for P4

● Unique temporary register for each newly-calculated value

● No need for Φ-functions because we’ll store to memory at every assignment

cmp_LT r1, r2 → r3
cbr r3 → l1, l2

l1:
 loadI 4 → r4
 jmp l3

l2:
 loadI 8 → r5
 jmp l3

l3:
 r6 = Φ(r4, r5)

if (a < b) {
 c = 4;
} else {
 c = 8;
}

Procedure Calls

● Procedures are harder
– (recall x86-64 calling conventions from CS 261)

– Need rules for control transfer, parameter passing, return
values, and register usage

● Usually specified by an application binary interface (ABI)

– We'll cover all of this next week

Prologue

Precall

Postreturn

Epilogue

Prologue

Epilogue

Caller

Callee

Reading Topics

● 4.4: Ad hoc syntax-directed translation

– General concept of AST-based translation

● 5.3: Linear IRs

● 5.4: Mapping values to names

– Intro to static single-assignment (SSA) form

● 7.1-7.5, 7.8: Basic code generation

– Data storage, arithmetic, booleans/conditionals, arrays

– Control flow constructs

– Parts needed for Decaf

● 7.6-7.7: Code gen for strings and structures

– Not needed for Decaf

Allocating Symbols (pre-P4)

● Walk the AST, allocating memory for symbols
– Each symbol has a location and offset field

● This is a form of static coordinates
● STATIC_VAR and static offset for global variables
● STACK_LOCAL and BP offset for local variables
● STACK_PARAM and BP offset for function parameters

– Track allocated memory
● localSize attribute for each FuncDecl
● staticSize attribute for the Program

Code Generation (P4)

● Walk the AST, generating code
– Build ILOC instructions for all nodes

● Refer to operational semantics (section 7 of language
reference)

● Store in “code” attribute
● May require copying “code” attribute of children

– Store expression results in temporary registers
● Use “reg” attribute
● Need state information to track the next temporary IDs
● Location loads and stores will require static coordinate info

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

