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Compilation

char data[20];

int main() {
    float x
      = 42.0;
    return 7;
}

Source code

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing &
Parsing

Analysis Code Generation
& Optimization

"Front end"

"Back end"
Current
focus

Analysis goal: reject as many incorrect 
programs as possible at the AST level 
before attempting code generation

AST

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables



  

Overview

● Syntax: form of a program

– Described using regular expressions and context-free grammars

● Semantics: meaning of a program

– Much more difficult to describe clearly

– Described using type systems and language reference specifications

Valid character strings (identified by I/O system)

Valid sequences of Decaf tokens (identified by lexer)

Syntactically-valid Decaf programs (identified by parser)

Semantically-valid Decaf programs (identified by analysis)

Correct Decaf programs (identified by ???)



  

Static Analysis

● Goal: reject incorrect programs

● Problem: checking semantics is hard!

– In general, we won't be able to check for full correctness

– However, some aspects of semantics can be robustly encoded using 
types and type systems

– We will also implement other rudimentary correctness checks
● E.g., Decaf programs must have a “main” function



  

Static Analysis

● Sound vs. complete static analysis
– A “sound” system has no false positives

● All errors reported are true errors
– A “complete” system has no false negatives

● All true errors are reported
● Most static analysis is sound but not complete

– A lack of type errors does not mean the program is 
correct

– However, the presence of a type error generally does 
mean that the program is NOT correct



  

Static Analysis

● Type inference is the process of assigning types to expressions

– This information must be “inferred” if it is not explicit

– For Decaf, every expression has an unambiguous inferred type!
● Conclusions of the type rules – assume the premises are true

● Type checking is the process of ensuring that a program has no 
type-related errors

– Ensure that operations are supported by a variable's type

– Ensure that operands are of compatible types

– This could happen at compile time (static) or at run time (dynamic)

– A type error is usually considered a bug

– For Decaf, almost every ASTNode type will have some kind of check



  

Type Compatibility

● Rules about type compatibility define types that can be used 
together in expressions, assignments, etc.

– Sometimes this may require a type conversion

● Two types are name-equivalent if their names are identical

● Two types are structurally-equivalent if

– They are the same basic type or

– They are recursively structurally-equivalent

C example: typedef unsigned char byte_t;
unsigned char a; // types of a and b are structurally-
byte_t b; // equivalent but not name equivalent



  

Type Conversions

● Implicit vs. explicit
– Implicit conversions are performed automatically by the 

compiler (“coercions”)
● E.g., double x = 2;

– Explicit conversions are specified by the programmer (“casts”)
● E.g., int x = (int)1.5;

● Narrowing vs. widening
– Widening conversions preserve information

● E.g., int → long

– Narrowing conversions may lose information
● E.g., float → int



  

Advanced Type Inference

● Polymorphism: literally “taking many forms”

– A polymorphic construct supports multiple types

– Subtype polymorphism: object inheritance

– Function polymorphism: overloading

– Parametric polymorphism: generic type identifiers
● E.g., templates in C++ or generics in Java

– During type inference, create type variables and unify type variables 
with concrete types

● Some type variables might remain unbound
● E.g., len : ([a]) → int

● E.g.,  map : ((a → b), [a]) → [b]

len l = case l of
  []     → 0
  (x:xs) → 1 + (len xs)

In Haskell: map f l = case l of
  []     → []
  (x:xs) → (f x):(map f xs)



  

Problem

● Inferring the type of an ASTLiteral is easy

● How do we infer the type of an ASTLocation?

– Need information about Γ (type environment)

– Systems core theme: Information = Bits + Context



  

Symbols

● A symbol is a single name in a program
– What kind of value is it: variable or function?

– If it is a variable:
● What is its type? How big is it?
● Where is it stored?
● How long must its value be preserved?
● Who is responsible for allocating, initializing, and de-allocating it?

– If it is a function:
● What parameters (name and type) does it take?
● What type does it return?



  

Symbol Tables

● A symbol table stores info about symbols during 
compilation
– Aggregates information from (potentially) distant parts of code
– Maps symbol names to symbol information
– Often implemented using hash tables
– Usually one symbol table per scope

● Each table contains a pointer to its parent (next larger scope)
● Supported operations

– Insert (name, record) – add a new symbol to the current table
– LookUp (name) – retrieve information about a symbol



  

Symbol Table Example

0

1

2a

2b

3

NOTE: For Decaf, we will have two scopes for each function, one associated with the 
FuncDecl (for parameters) and one associated with the body Block (for local variables).



  

AST Attributes

● An AST attribute is an additional piece of information
– Often used to store data useful to multiple passes
– Aside: some translations can be done purely using 

attributes
● Syntax-directed translation (original dragon book!)
● Modern translation is often too complex for this to be feasible

– Inherited vs. synthesized attributes
● Inherited attributes depend only on parents/siblings
● Synthesized attributes depend only on children

Inherited Synthesized



  

Attribute Grammars

● Some synthesized attributes can be calculated 
using post-visit rules in a grammar



  

Example

1 + 2 * a

E → E
1
 + T { E.cost = E

1
.cost + T.cost + 1 }

     |  T { E.cost = T.cost }

T → T
1
 * F { T.cost = T

1
.cost + F.cost + 2 }

     |  F { T.cost = F.cost }

F → ( E ) { F.cost = E.cost }
     |  ID { F.cost = 5 }
     |  DEC { F.cost = 1 }

E

E T

T

F

T F

F

1
2

a

*

+

cost = 1

cost = 1

cost = 1

cost = 1

cost = 1 cost = 5

cost = 1 + 5 + 2 = 8

cost = 1 + 8 + 1 = 10



  

Attributes in P3 and P4

P3

P4



  

Building Symbol Tables (pre-P3)

● Walk the AST, creating linked tables using a stack
– Create new symbol table for each scope

● Every Program, FuncDecl, and Block
● Caveat: every function contains a function-wide block for local 

vars, so the function level symbol table will ONLY contain the 
function parameters

● Store tables as an attribute (“symbolTable”) in AST nodes

– Add all symbol information
● Global variables go in Program table (including arrays)
● Function symbols go in Program table
● Function parameters go in FuncDecl table
● Local variables go in Block table



  

Static Analysis (P3)

● Walk the AST, checking correctness properties

– Infer the types of all expressions (pre-visits)
● Use symbol table lookups where necessary

● Store in “type” attribute (SET_INFERRED_TYPE)

– Verify all types are correct (post-visits)
● Refer to type rules (section 6 of language reference)

● May require checking “type” attribute of children (GET_INFERRED_TYPE)

● May require symbol table lookups
● May require maintaining some state (e.g., current function)

– Verify other properties of correct programs (post-visits)
● Example: break and continue should only occur in while loops

● Re-read Decaf reference carefully for these



  

Decaf Example

bool g;

def int add(int x, int y)
{
    return x + y;
}

def int main()
{
    int a;
    a = 3;
    return add(a, 2);
}

Program
 add : (int, int) -> int
 main : () -> int
 g : bool

  FuncDecl name="add"
   x : int
   y : int

    Block

  FuncDecl name="main"

    Block
     a : int



  

Decaf Example
def int add(int x, int y)
{
    return x + y;
}

def int main()
{
    int a;
    a = 3;
    return add(a, 2);
}

provided in P3

inferred in P3



  

P3 reminder

● Check your implementation against the reference 
compiler (/cs/students/cs432/f24/decaf)
– If the reference compiler rejects a program, you should 

too (and vice versa for correct programs)

– Use “--fdump-tables” to print the symbol tables

– Also, the graphical AST should have the tables now (both 
in the reference compiler and in your project)

Optional challenge: write P3 using a “pure” visitor; i.e., the 
visitor methods perform no tree traversals, only symbol 

lookups and accesses of direct child attributes.



  

Preview: P4

char data[20];

int main() {
    float x
      = 42.0;
    return 7;
}

Source code

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Optimizations &
Machine code gen &
Assembling/linking

"Back end"
P4

Lexing &
Parsing &
Analysis

main:
  loadI 7 => RET

Linear IR code

Code Generation

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables



  

Allocating Symbols (pre-P4)

● Walk the AST, allocating memory for symbols
– Each symbol has a location and offset field

● This is a form of static coordinates
● STATIC_VAR and static offset for global variables
● STACK_LOCAL and BP offset for local variables
● STACK_PARAM and BP offset for function parameters

– Track allocated memory
● localSize attribute for each FuncDecl
● staticSize attribute for the Program



  

Code Generation (P4)

● Walk the AST, generating code
– Build ILOC instructions for all nodes

● Refer to operational semantics (section 7 of language 
reference)

● Store in “code” attribute
● May require copying “code” attribute of children

– Store expression results in temporary registers
● Use “reg” attribute
● Need state information to track the next temporary ID
● Location loads and stores will require static coordinate info
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