

CS 432
Fall 2024

Mike Lam, Professor

Static Analysis

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing &
Parsing

Analysis Code Generation
& Optimization

"Front end"

"Back end"
Current
focus

Analysis goal: reject as many incorrect
programs as possible at the AST level
before attempting code generation

AST

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

Overview

● Syntax: form of a program

– Described using regular expressions and context-free grammars

● Semantics: meaning of a program

– Much more difficult to describe clearly

– Described using type systems and language reference specifications

Valid character strings (identified by I/O system)

Valid sequences of Decaf tokens (identified by lexer)

Syntactically-valid Decaf programs (identified by parser)

Semantically-valid Decaf programs (identified by analysis)

Correct Decaf programs (identified by ???)

Static Analysis

● Goal: reject incorrect programs

● Problem: checking semantics is hard!

– In general, we won't be able to check for full correctness

– However, some aspects of semantics can be robustly encoded using
types and type systems

– We will also implement other rudimentary correctness checks
● E.g., Decaf programs must have a “main” function

Static Analysis

● Sound vs. complete static analysis
– A “sound” system has no false positives

● All errors reported are true errors
– A “complete” system has no false negatives

● All true errors are reported
● Most static analysis is sound but not complete

– A lack of type errors does not mean the program is
correct

– However, the presence of a type error generally does
mean that the program is NOT correct

Static Analysis

● Type inference is the process of assigning types to expressions

– This information must be “inferred” if it is not explicit

– For Decaf, every expression has an unambiguous inferred type!
● Conclusions of the type rules – assume the premises are true

● Type checking is the process of ensuring that a program has no
type-related errors

– Ensure that operations are supported by a variable's type

– Ensure that operands are of compatible types

– This could happen at compile time (static) or at run time (dynamic)

– A type error is usually considered a bug

– For Decaf, almost every ASTNode type will have some kind of check

Type Compatibility

● Rules about type compatibility define types that can be used
together in expressions, assignments, etc.

– Sometimes this may require a type conversion

● Two types are name-equivalent if their names are identical

● Two types are structurally-equivalent if

– They are the same basic type or

– They are recursively structurally-equivalent

C example: typedef unsigned char byte_t;
unsigned char a; // types of a and b are structurally-
byte_t b; // equivalent but not name equivalent

Type Conversions

● Implicit vs. explicit
– Implicit conversions are performed automatically by the

compiler (“coercions”)
● E.g., double x = 2;

– Explicit conversions are specified by the programmer (“casts”)
● E.g., int x = (int)1.5;

● Narrowing vs. widening
– Widening conversions preserve information

● E.g., int → long

– Narrowing conversions may lose information
● E.g., float → int

Advanced Type Inference

● Polymorphism: literally “taking many forms”

– A polymorphic construct supports multiple types

– Subtype polymorphism: object inheritance

– Function polymorphism: overloading

– Parametric polymorphism: generic type identifiers
● E.g., templates in C++ or generics in Java

– During type inference, create type variables and unify type variables
with concrete types

● Some type variables might remain unbound
● E.g., len : ([a]) → int

● E.g., map : ((a → b), [a]) → [b]

len l = case l of
 [] → 0
 (x:xs) → 1 + (len xs)

In Haskell: map f l = case l of
 [] → []
 (x:xs) → (f x):(map f xs)

Problem

● Inferring the type of an ASTLiteral is easy

● How do we infer the type of an ASTLocation?

– Need information about Γ (type environment)

– Systems core theme: Information = Bits + Context

Symbols

● A symbol is a single name in a program
– What kind of value is it: variable or function?

– If it is a variable:
● What is its type? How big is it?
● Where is it stored?
● How long must its value be preserved?
● Who is responsible for allocating, initializing, and de-allocating it?

– If it is a function:
● What parameters (name and type) does it take?
● What type does it return?

Symbol Tables

● A symbol table stores info about symbols during
compilation
– Aggregates information from (potentially) distant parts of code
– Maps symbol names to symbol information
– Often implemented using hash tables
– Usually one symbol table per scope

● Each table contains a pointer to its parent (next larger scope)
● Supported operations

– Insert (name, record) – add a new symbol to the current table
– LookUp (name) – retrieve information about a symbol

Symbol Table Example

0

1

2a

2b

3

NOTE: For Decaf, we will have two scopes for each function, one associated with the
FuncDecl (for parameters) and one associated with the body Block (for local variables).

AST Attributes

● An AST attribute is an additional piece of information
– Often used to store data useful to multiple passes
– Aside: some translations can be done purely using

attributes
● Syntax-directed translation (original dragon book!)
● Modern translation is often too complex for this to be feasible

– Inherited vs. synthesized attributes
● Inherited attributes depend only on parents/siblings
● Synthesized attributes depend only on children

Inherited Synthesized

Attribute Grammars

● Some synthesized attributes can be calculated
using post-visit rules in a grammar

Example

1 + 2 * a

E → E
1
 + T { E.cost = E

1
.cost + T.cost + 1 }

 | T { E.cost = T.cost }

T → T
1
 * F { T.cost = T

1
.cost + F.cost + 2 }

 | F { T.cost = F.cost }

F → (E) { F.cost = E.cost }
 | ID { F.cost = 5 }
 | DEC { F.cost = 1 }

E

E T

T

F

T F

F

1
2

a

*

+

cost = 1

cost = 1

cost = 1

cost = 1

cost = 1 cost = 5

cost = 1 + 5 + 2 = 8

cost = 1 + 8 + 1 = 10

Attributes in P3 and P4

P3

P4

Building Symbol Tables (pre-P3)

● Walk the AST, creating linked tables using a stack
– Create new symbol table for each scope

● Every Program, FuncDecl, and Block
● Caveat: every function contains a function-wide block for local

vars, so the function level symbol table will ONLY contain the
function parameters

● Store tables as an attribute (“symbolTable”) in AST nodes

– Add all symbol information
● Global variables go in Program table (including arrays)
● Function symbols go in Program table
● Function parameters go in FuncDecl table
● Local variables go in Block table

Static Analysis (P3)

● Walk the AST, checking correctness properties

– Infer the types of all expressions (pre-visits)
● Use symbol table lookups where necessary

● Store in “type” attribute (SET_INFERRED_TYPE)

– Verify all types are correct (post-visits)
● Refer to type rules (section 6 of language reference)

● May require checking “type” attribute of children (GET_INFERRED_TYPE)

● May require symbol table lookups
● May require maintaining some state (e.g., current function)

– Verify other properties of correct programs (post-visits)
● Example: break and continue should only occur in while loops

● Re-read Decaf reference carefully for these

Decaf Example

bool g;

def int add(int x, int y)
{
 return x + y;
}

def int main()
{
 int a;
 a = 3;
 return add(a, 2);
}

Program
 add : (int, int) -> int
 main : () -> int
 g : bool

 FuncDecl name="add"
 x : int
 y : int

 Block

 FuncDecl name="main"

 Block
 a : int

Decaf Example
def int add(int x, int y)
{
 return x + y;
}

def int main()
{
 int a;
 a = 3;
 return add(a, 2);
}

provided in P3

inferred in P3

P3 reminder

● Check your implementation against the reference
compiler (/cs/students/cs432/f24/decaf)
– If the reference compiler rejects a program, you should

too (and vice versa for correct programs)

– Use “--fdump-tables” to print the symbol tables

– Also, the graphical AST should have the tables now (both
in the reference compiler and in your project)

Optional challenge: write P3 using a “pure” visitor; i.e., the
visitor methods perform no tree traversals, only symbol

lookups and accesses of direct child attributes.

Preview: P4

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Optimizations &
Machine code gen &
Assembling/linking

"Back end"
P4

Lexing &
Parsing &
Analysis

main:
 loadI 7 => RET

Linear IR code

Code Generation

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

Allocating Symbols (pre-P4)

● Walk the AST, allocating memory for symbols
– Each symbol has a location and offset field

● This is a form of static coordinates
● STATIC_VAR and static offset for global variables
● STACK_LOCAL and BP offset for local variables
● STACK_PARAM and BP offset for function parameters

– Track allocated memory
● localSize attribute for each FuncDecl
● staticSize attribute for the Program

Code Generation (P4)

● Walk the AST, generating code
– Build ILOC instructions for all nodes

● Refer to operational semantics (section 7 of language
reference)

● Store in “code” attribute
● May require copying “code” attribute of children

– Store expression results in temporary registers
● Use “reg” attribute
● Need state information to track the next temporary ID
● Location loads and stores will require static coordinate info

	Slide 1
	Slide 2
	Slide 3
	Slide 9
	Slide 10
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

