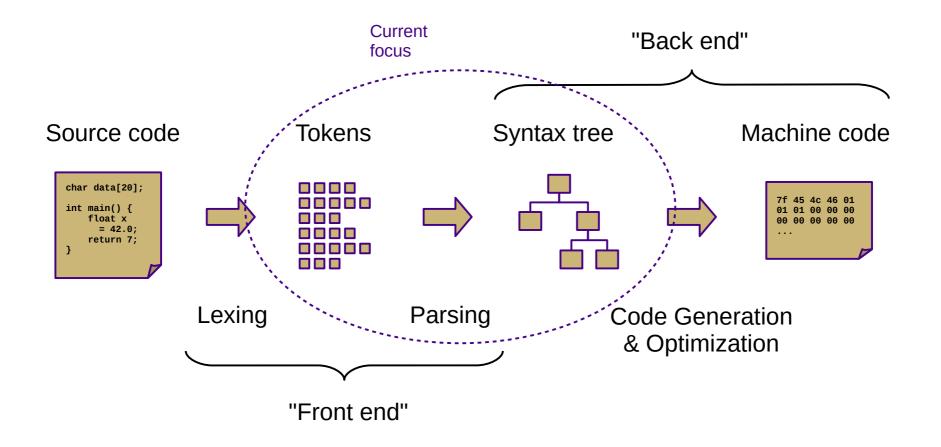
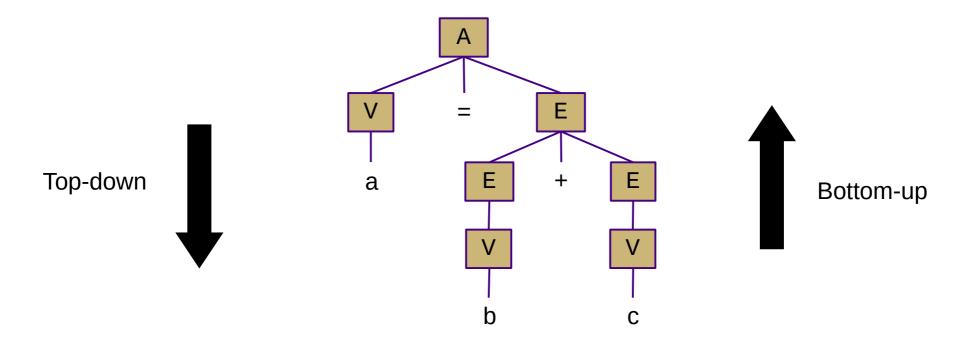
CS 432 Fall 2024


Mike Lam, Professor

(AN UNMATCHED LEFT PARENTHESIS CREATES AN UNRESOLVED TENSION THAT WILL STAY WITH YOU ALL DAY.

https://xkcd.com/859/


Bottom-Up (LR) Parsing

Compilation

Overview

- Two general parsing approaches
 - Top-down: begin with start symbol (root of parse tree), and gradually expand non-terminals
 - Bottom-up: begin with terminals (leaves of parse tree), and gradually connect using non-terminals

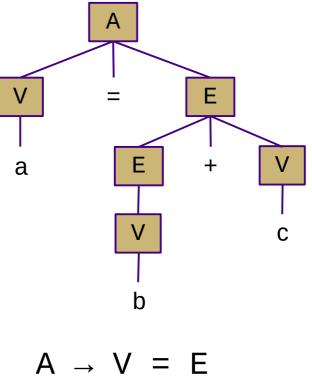
Shift-Reduce Parsing

- Top-down (LL) parsers
 - Left-to-right scan, Leftmost derivation
 - Recursive routines, one per non-terminal (*recursive descent*)
 - Implicit stack (system call stack)
 - Requires more restrictive grammars
 - Simpler to understand and possible to hand-code
- Bottom-up (LR) parsers
 - Left-to-right scan, (reverse) Rightmost derivation
 - "Shift"/push terminals and non-terminals onto a stack
 - "Reduce"/pop to replace *handles* with non-terminals
 - Less restrictive grammars
 - Harder to understand and nearly always auto-generated; very efficient!

Shift-Reduce Parsing

- shift 'a'
- <u>a</u>
 - reduce (V \rightarrow a)
- V
 - shift '='
- V =

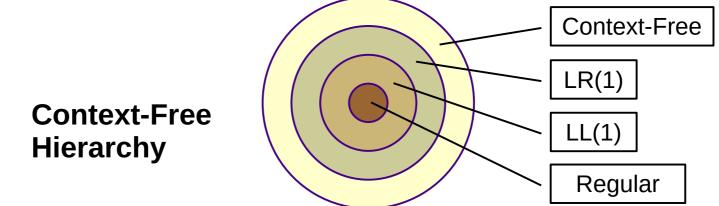
•


- shift 'b'
- V = <u>b</u>
 - reduce (V \rightarrow b)
- $V = \underline{V}$
 - reduce (E \rightarrow V)

- V = E
- shift '+'
 V = E +
 - shift 'c'
- $V = E + \underline{c}$ - reduce (V \rightarrow c)
- $V = \underline{E + V}$ - reduce ($E \rightarrow E + V$)
- <u>V = E</u>

 reduce (A → V = E)

 A
 - accept

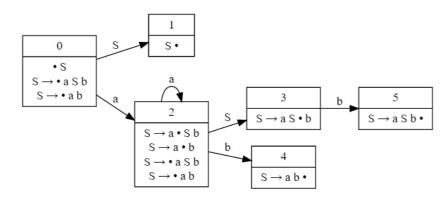

(handles are underlined) shift = push, reduce = popN

- - "a = b + c"

LR Parsing

- <u>LR(1)</u> grammars and parsers
 - Left-to-right scan of the input string
 - **<u>Rightmost</u>** derivation
 - <u>1</u> symbol of lookahead
 - Less restricted form of context-free grammar
 - Support for most language features
 - Efficient parsing

LR Parser Variants


- LR(k) multiple lookaheads (not necessary)
- LR(1) single lookahead (EAC covers this!)
 - Very general and very powerful
 - Lots of item sets; tedious to construct by hand
 - Overkill for most practical languages
- LALR(1) special case of LR(1) that merges some states
 - Less powerful, but easier to manage
- **SLR(1)** special case of LR(1) w/o explicit lookahead (*Dragon book covers this!*)
 - Uses FOLLOW sets to disambiguate
 - Even less powerful, but much easier to understand
 - Slightly counterintuitive: all LR(1) languages have SLR(1) grammars
 - So SLR(1) is sufficiently general for our purposes
 - Use LR(0) item sets and generate SLR(1) ACTION/GOTO tables
- LR(0) no lookahead
 - Severely restricted; most "interesting" grammars aren't LR(0)

LR Parsing

- Creating an LR parser (pushdown automaton)
 - Build item sets from grammar productions
 - An item uses a dot (•) to represent parser status: "A \rightarrow a S b"
 - Dots on the left end: "possibilities"
 - Dots in the middle: "partially-complete"
 - Dots on the right end: "complete"
 - Item sets represent multiple parser states (build by taking closure)
 - Similar to NFA state collections in subset construction
 - Build **ACTION / GOTO** tables
 - Encodes stack and transition decisions (like δ in FA)
 - **ACTION**(state, terminal) = { *shift/push*, *reduce/pop*, *accept* }
 - **GOTO**(state, non-terminal) = state

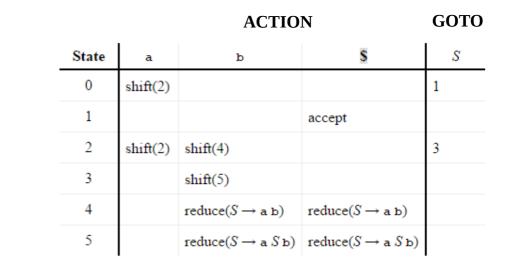
LR(0) Item Sets

- LR(0) item sets and automaton
 - Begin with an item representing "• S" or "S' \rightarrow S"
 - "S" is the start symbol of the grammar
 - The latter is an augmented grammar
 - The Dragon book uses it; the online tool doesn't
 - Take the closure to add more items if the dot lies immediately to the left of a non-terminal
 - Added items are non-kernel items, denoted here in blue
 - Form new sets by "moving the dot" (and take the closure)
 - Convert to finite automaton for recognizing handles by adding transitions
 - Each set becomes a state
 - "Moving the dot" = state transition + stack push

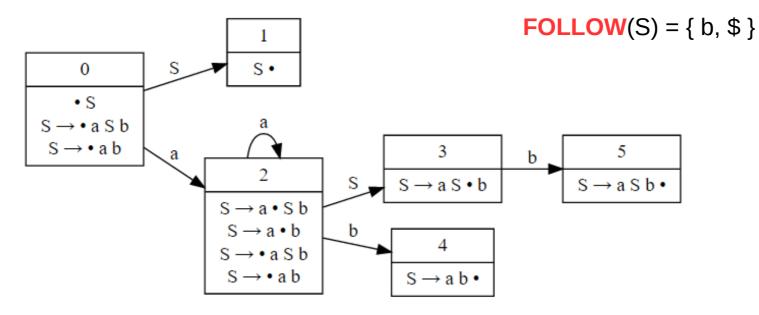
S	→ a S b a b
I₀:	• S S → • a S b S → • a b
I ₁ :	S •
I ₂ :	$S \rightarrow a \cdot S b$ $S \rightarrow a \cdot b$
I ₃ :	$S \rightarrow a S \bullet b$
I ₄ :	$S \rightarrow a b \bullet$
I ₅ :	$S \rightarrow a S b \bullet$

SLR(1) Tables

- Create ACTION and GOTO tables
 - For each item set i
 - If an item matches $A \rightarrow \beta \bullet c y$
 - ACTION(i, c) = "shift" to corresponding item set ("move the dot")
 - If an item matches $A \rightarrow \beta$ •


- ACTION(i, x) = "reduce A $\rightarrow \beta$ " for all x in FOLLOW(A) ("backtrack in FA")

• If an item matches $A \rightarrow \beta \bullet B \gamma$


- GOTO(i, B) = corresponding item set ("move the dot")

- ACTION({S •}, \$) = "accept"
- Any empty ACTION entry = "error" (usually left blank)

Example

$S \rightarrow a S b$ | a b

SLR(1) Parsing

- Push state 0 onto the stack
- Repeat until next action is accept or error:
 - Look up next action in ACTION table
 - Row is the current state (top of stack)
 - Column is the next input (terminal or \$)
 - If action is shift(s):
 - Push state s onto stack
 - Consume one token from input
 - If action is reduce ($A \rightarrow \beta$):
 - Pop one state for each terminal or non-terminal in β
 - Look up next state in **GOTO** table and **push** it onto the stack
 - Row is the current state (top of stack, *after* popping β)
 - Column is A (newly-reduced non-terminal)

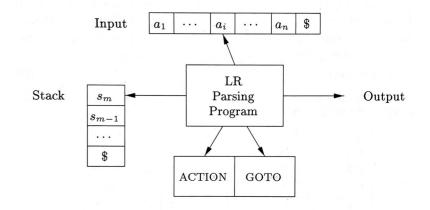


Figure 4.35: Model of an LR parser $% \left({{{\rm{A}}_{\rm{B}}} \right)$

Example

 $S \rightarrow a S b$ | a b

ACTION S State Sa b 0 shift(2) 1 1 accept 2 shift(2) 3 shift(4) 3 shift(5) 4 $reduce(S \rightarrow a b)$ $reduce(S \rightarrow a b)$ $\operatorname{reduce}(S \to \operatorname{a} S \operatorname{b}) \quad \operatorname{reduce}(S \to \operatorname{a} S \operatorname{b})$ 5

GOTO

Parsing for "a a b b":

(Dragon Book version)

<u>Stack</u>	<u>Symbols</u>	<u>Input</u>	<u>Action</u>
 \$ 0 \$ 0 2 \$ 0 2 2 2 4 \$ 0 2 3 5 0 1 		 b b b b b b b b s b s s<	<pre>shift(2) shift(2) shift(4) reduce(S → a b) shift(5) reduce(S → a S b) accept</pre>

Example

 $S \rightarrow a S b$ | a b

			AC	ΓΙΟΝ	GOTO
Sta	ate	a	b	S	S
()	shift(2)			1
1	l			accept	
2	2	shift(2)	shift(4)		3
3	3		shift(5)		
4	ł		$\operatorname{reduce}(S \to \mathtt{a} \mathtt{b})$	$\operatorname{reduce}(S \to \mathbf{a} \; \mathbf{b})$	
5	5		$reduce(S \rightarrow a \ S \ b)$	$reduce(S \rightarrow a \ S \ b)$	

Parsing for "a a b b":

(cleaner version w/ goto)

<u>Stack</u>	<u>Input</u>	<u>Action</u>	<u>Goto</u>
0 2 2 2 2 2 2 4 0 2 2 4 0 2 3 5 0 1	<u>a</u> a b b \$ <u>a</u> b b \$ <u>b</u> b \$ <u>b</u> \$ <u>b</u> \$ <u>b</u> \$ <u>\$</u> \$	shift(2) shift(2) shift(4) reduce($S \rightarrow a b$) shift(5) reduce($S \rightarrow a S b$) accept	- - 3 - 1

LR Conflicts

- Shift/reduce
 - Can be resolved by always shifting or by grammar modification
- Reduce/reduce
 - Requires grammar modification to fix

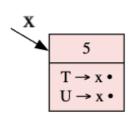
Shift/reduce conflict in LR(0)

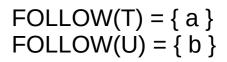
Observation: none of these languages are LL(1) either!

A -> x A x A ->

Shift/reduce conflict (all LR)

A -> B | C B -> x C -> x

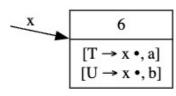

Reduce/reduce conflict (all LR)


- This grammar is LR(0):
 - $S \rightarrow a T a$ | a T b $T \rightarrow X$

LR(0) Parsing Table

State	а	b	x	\$	S	Т
0	shift(2)				1	
1	accept	accept	accept	accept		
2			shift(4)			3
3	shift(5)	shift(6)				
4	$reduce(T \rightarrow x)$	$reduce(T \rightarrow \mathbf{x})$	$reduce(T \rightarrow x)$	$reduce(T \rightarrow \mathbf{x})$		
5	$reduce(S \rightarrow a T a)$	$reduce(S \rightarrow a T a)$	$reduce(S \rightarrow a T a)$	$reduce(S \rightarrow a T a)$		
6	$reduce(S \rightarrow a T b)$	$reduce(S \rightarrow a T b)$	$reduce(S \rightarrow a T b)$	$reduce(S \rightarrow a T b)$		

- This grammar is SLR(1) but not LR(0):
 - $S \rightarrow a T a$ | a U bT $\rightarrow x$ U $\rightarrow x$


LR(0) Parsing Table

State	а	ь	x	\$	S	Т	U
0	shift(2)				1		
1	accept	accept	accept	accept			
2			shift(5)			3	4
3	shift(6)						
4		shift(7)					
5	reduce $(T \rightarrow \mathbf{x})$ reduce $(U \rightarrow \mathbf{x})$	reduce $(T \rightarrow \mathbf{x})$ reduce $(U \rightarrow \mathbf{x})$. ,	reduce $(T \rightarrow \mathbf{x})$ reduce $(U \rightarrow \mathbf{x})$			
6	$reduce(S \rightarrow a T a)$	$reduce(S \rightarrow a T a)$	$reduce(S \rightarrow a T a)$	$reduce(S \rightarrow a T a)$			
7	$reduce(S \rightarrow a \ U \ b)$	$reduce(S \rightarrow a \ U \ b)$	$reduce(S \rightarrow a \ U \ b)$	$reduce(S \rightarrow a U b)$			

SLR(1) Parsing Table

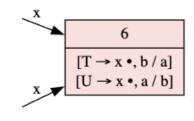
State	а	b	x	\$	S	Т	U
0	shift(2)				1		
1				accept			
2			shift(5)			3	4
3	shift(6)						
4		shift(7)					
5	$reduce(T \rightarrow x)$	$\operatorname{reduce}(U \rightarrow \mathbf{x})$)				
6				$reduce(S \rightarrow a T a)$			
7				reduce($S \rightarrow \mathbf{a} \ U \mathbf{b}$)			

- This grammar is LALR(1) but not SLR(1):
 - $S \rightarrow a T a$ | a U b bTb

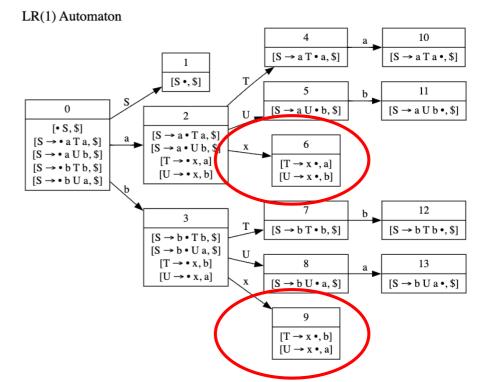
FOLLOW(T) = { a, b } FOLLOW(U) = { **b** }

 $T \rightarrow X$ $U \rightarrow X$

State	а	ь	x	\$	S	Т	U
0	shift(2)	shift(3)			1		
1				accept			
2			shift(6)			4	5
3			shift(8)			7	
4	shift(9)						
5		shift(10)					
6	$reduce(T \rightarrow x)$	reduce $(T \rightarrow \mathbf{x})$ reduce $(U \rightarrow \mathbf{x})$					
7		shift(11)					
8	$reduce(T \rightarrow x)$	$reduce(T \rightarrow x)$					
9				$reduce(S \rightarrow a T a)$			
10				$reduce(S \rightarrow a U b)$			
11				reduce($S \rightarrow \mathbf{b} T \mathbf{b}$)			


S

LALR(1) Parsing Table


State	а	ь	x	\$	S	Т	U
0	shift(2)	shift(3)			1		
1	0			accept			
2			shift(6)			4	5
3			shift(8)			7	
4	shift(9)						
5		shift(10)					
6	$reduce(T \rightarrow x)$	$reduce(U \rightarrow x)$)				
7		smit(11)					
8		$reduce(T \rightarrow x)$					
9				$reduce(S \rightarrow a T a)$			
10				$reduce(S \rightarrow a U b)$			
11				reduce($S \rightarrow \mathbf{b} T \mathbf{b}$)			

• This grammar is LR(1) but not LALR(1):

 $S \rightarrow a T a$ | a U b| b T b| b U a $T \rightarrow X$ $U \rightarrow X$

FOLLOW(T) = { a, b } FOLLOW(U) = { a, b }

LR(1) Parsing Table

. . .

6	$reduce(T \rightarrow \mathbf{x})$	$reduce(U \rightarrow x)$
7		shift(12)
8	shift(13)	
9	$reduce(U \rightarrow x)$	reduce $(T \rightarrow \mathbf{x})$

• • •