

CS 432
Fall 2024

Mike Lam, Professor

Bottom-Up (LR) Parsing

https://xkcd.com/859/

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"Current
focus

Overview

● Two general parsing approaches
– Top-down: begin with start symbol (root of parse tree), and

gradually expand non-terminals

– Bottom-up: begin with terminals (leaves of parse tree), and
gradually connect using non-terminals

Top-down Bottom-up

A

V E

EE

V V

+

=

a

b c

Shift-Reduce Parsing

● Top-down (LL) parsers

– Left-to-right scan, Leftmost derivation

– Recursive routines, one per non-terminal (recursive descent)

– Implicit stack (system call stack)

– Requires more restrictive grammars

– Simpler to understand and possible to hand-code

● Bottom-up (LR) parsers

– Left-to-right scan, (reverse) Rightmost derivation

– "Shift"/push terminals and non-terminals onto a stack

– "Reduce"/pop to replace handles with non-terminals

– Less restrictive grammars

– Harder to understand and nearly always auto-generated; very efficient!

Shift-Reduce Parsing

●

– shift 'a'

● a

– reduce (V → a)

● V

– shift '='

● V =

– shift 'b'

● V = b

– reduce (V → b)

● V = V

– reduce (E → V)

A → V = E
E → E + V
 | V
V → a | b | c

● V = E
– shift '+'

● V = E +
– shift 'c'

● V = E + c
– reduce (V → c)

● V = E + V
– reduce (E → E + V)

● V = E
– reduce (A → V = E)

● A
– accept

(handles are underlined)

shift = push, reduce = popN

A

V E

E

V

V+

=

a

b

c

“a = b + c”

LR Parsing

● LR(1) grammars and parsers
– Left-to-right scan of the input string

– Rightmost derivation

– 1 symbol of lookahead

– Less restricted form of context-free grammar
● Support for most language features
● Efficient parsing

Context-Free
Hierarchy

Regular

LL(1)

LR(1)

Context-Free

LR Parser Variants

● LR(k) – multiple lookaheads (not necessary)
● LR(1) – single lookahead (EAC covers this!)

– Very general and very powerful

– Lots of item sets; tedious to construct by hand

– Overkill for most practical languages

● LALR(1) – special case of LR(1) that merges some states
– Less powerful, but easier to manage

● SLR(1) – special case of LR(1) w/o explicit lookahead (Dragon book covers this!)
– Uses FOLLOW sets to disambiguate

– Even less powerful, but much easier to understand

– Slightly counterintuitive: all LR(1) languages have SLR(1) grammars
● So SLR(1) is sufficiently general for our purposes

● Use LR(0) item sets and generate SLR(1) ACTION/GOTO tables

● LR(0) – no lookahead
– Severely restricted; most "interesting" grammars aren't LR(0)

LR Parsing

● Creating an LR parser (pushdown automaton)
– Build item sets from grammar productions

● An item uses a dot (•) to represent parser status: "A → a • S b"
– Dots on the left end: "possibilities"
– Dots in the middle: "partially-complete"
– Dots on the right end: "complete"

● Item sets represent multiple parser states (build by taking closure)
– Similar to NFA state collections in subset construction

– Build ACTION / GOTO tables
● Encodes stack and transition decisions (like δ in FA)
● ACTION(state, terminal) = { shift/push, reduce/pop, accept }
● GOTO(state, non-terminal) = state

LR(0) Item Sets

● LR(0) item sets and automaton
– Begin with an item representing “• S” or “S’ → • S”

● “S” is the start symbol of the grammar

● The latter is an augmented grammar

● The Dragon book uses it; the online tool doesn’t

– Take the closure to add more items if the dot lies
immediately to the left of a non-terminal

● Added items are non-kernel items, denoted here in blue

– Form new sets by “moving the dot” (and take the closure)

– Convert to finite automaton for recognizing handles by
adding transitions

● Each set becomes a state

● “Moving the dot” = state transition + stack push

S → a S b
 | a b

 I
0
: • S

 S → • a S b
 S → • a b

 I
1
: S •

 I
2
: S → a • S b

 S → a • b
 S → • a S b
 S → • a b

 I
3
: S → a S • b

 I
4
: S → a b •

 I
5
: S → a S b •

SLR(1) Tables

● Create ACTION and GOTO tables
– For each item set i

● If an item matches A → β • c γ
– ACTION(i, c) = "shift" to corresponding item set ("move the dot")

● If an item matches A → β •
– ACTION(i, x) = "reduce A → β" for all x in FOLLOW(A) (“backtrack in FA”)

● If an item matches A → β • B γ
– GOTO(i, B) = corresponding item set ("move the dot")

– ACTION({S •}, $) = "accept"

– Any empty ACTION entry = “error” (usually left blank)

Example

S → a S b
 | a b

ACTION GOTO

FOLLOW(S) = { b, $ }

SLR(1) Parsing

● Push state 0 onto the stack

● Repeat until next action is accept or error:

– Look up next action in ACTION table
● Row is the current state (top of stack)
● Column is the next input (terminal or $)

– If action is shift(s):

● Push state s onto stack
● Consume one token from input

– If action is reduce(A → β):

● Pop one state for each terminal or non-terminal in β

● Look up next state in GOTO table and push it onto the stack
– Row is the current state (top of stack, after popping β)

– Column is A (newly-reduced non-terminal)

Example

Parsing for “a a b b”:

ACTION GOTO

Stack Symbols Input Action

$ 0 $ a a b b $ shift(2)
$ 0 2 $ a a b b $ shift(2)
$ 0 2 2 $ a a b b $ shift(4)
$ 0 2 2 4 $ a a b b $ reduce(S → a b)
$ 0 2 3 $ a S b $ shift(5)
$ 0 2 3 5 $ a S b $ reduce(S → a S b)
$ 0 1 $ S $ accept

S → a S b
 | a b

(Dragon Book version)

Example

Parsing for “a a b b”:

ACTION GOTO

Stack Input Action Goto

0 a a b b $ shift(2) -
0 2 a b b $ shift(2) -
0 2 2 b b $ shift(4) -
0 2 2 4 b $ reduce(S → a b) 3
0 2 3 b $ shift(5) -
0 2 3 5 $ reduce(S → a S b) 1
0 1 $ accept

S → a S b
 | a b

(cleaner version w/ goto)

LR Conflicts

● Shift/reduce
– Can be resolved by always shifting or by grammar

modification
● Reduce/reduce

– Requires grammar modification to fix

A -> V = E
E -> E + V
E -> V
V -> a | b | c

A -> B | C
B -> x
C -> x

Shift/reduce conflict in LR(0)

Reduce/reduce conflict (all LR)

A -> x A x
A ->

Shift/reduce conflict (all LR)

Observation: none of these languages are LL(1) either!

LR examples

● This grammar is LR(0):

S → a T a

 | a T b

T → x

LR examples

● This grammar is SLR(1) but not LR(0):

S → a T a

 | a U b

T → x

U → x

FOLLOW(T) = { a }
FOLLOW(U) = { b }

LR examples

● This grammar is LALR(1) but not SLR(1):
S → a T a

 | a U b

 | b T b

T → x

U → x

FOLLOW(T) = { a, b }
FOLLOW(U) = { b }

LR examples

● This grammar is LR(1) but not LALR(1):
S → a T a

 | a U b

 | b T b

 | b U a

T → x

U → x

FOLLOW(T) = { a, b }
FOLLOW(U) = { a, b }

...

...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

