

CS 432
Fall 2024

Mike Lam, Professor

Top-Down (LL) Parsing

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"Current
focus

Review

● Recognize regular languages with finite automata
– Described by regular expressions
– Rule-based transitions, no memory required

● Recognize context-free languages with pushdown
automata
– Described by context-free grammars
– Rule-based transitions, MEMORY REQUIRED

● Add a stack!

Segue

KEY OBSERVATION: Allowing the translator to use memory to track parse
state information enables a wider range of automated machine translation.

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

Most useful
for PL

https://en.wikipedia.org/wiki/Chomsky_hierarchy

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Parsing Approaches

● Top-down: begin with start symbol (root of parse tree), and gradually
expand non-terminals
– Stack contains non-terminals that are still being expanded

● Bottom-up: begin with terminals (leaves of parse tree), and gradually
connect using non-terminals
– Stack contains roots of subtrees that still need to be connected

Top-down Bottom-up

A

V E

EE

V V

+

=

a

b c

Top-Down Parsing

root = createNode(S)
focus = root
push(null)
token = nextToken()

loop:
if (focus is non-terminal):

B = chooseRuleAndExpand(focus)
for each b in B.reverse():

focus.addChild(createNode(b))
push(b)

focus = pop()

else if (token == focus):
token = nextToken()
focus = pop()

else if (token == EOF and focus == null):
return root

else:
exit(ERROR)

A → V = E
V → a | b | c
E → E + E
 | V

A

V E

EE

V V

+

=

a

b c

Recursive Descent Parsing

● Idea: use the system stack rather than an explicit stack

– One function for each non-terminal

– Encode productions with function calls and token checks

– Use recursion to track current “state” of the parse

– Easiest kind of parser to write manually

A → ‘if’ C ‘then’ S
 | ‘goto’ L

parseA(tokens):
 node = new A()
 next = tokens.next()
 if next == ”if”:
 node.type = IFTHEN
 node.cond = parseC()
 matchToken(“then”)
 node.stmt = parseS()
 else if next == “goto”
 node.type = GOTO
 node.lbl = parseL()
 else
 error (“expected ‘if’ or ‘goto’”)
 return node

class A {
 enum Type
 { IFTHEN, GOTO }
 Type type
 C cond
 S stmt
 L lbl
}

Top-Down Parsing

● Main issue: choosing which rule to use
– In previous example, we just looked for ‘if’ or ‘goto’
– With full lookahead, it would be relatively easy

● This would be very inefficient

– Can we do it with a single lookahead?
● That would be much faster
● Must be careful to avoid backtracking

LL(1) Parsing

● LL(1) grammars and parsers
– Left-to-right scan of the input string

– Leftmost derivation

– 1 symbol of lookahead

– Highly restricted form of context-free grammar
● No left recursion
● No backtracking

Context-Free
Hierarchy

Regular

LL(1)

LR(1)

Context-Free

LL(1) Grammars

● We can convert many grammars to be LL(1)
– Must remove left recursion

– Must remove common prefixes (i.e., left factoring)

– Easy (relatively) to hand-write a parser
● Practical solution to real-world translation problems

A → A α
 | β

A → α β
1

 | α β
2

Grammar with left recursion Grammar with common prefixes

Eliminating Left Recursion

● Left recursion: A → A α | β

– Often a result of left associativity (e.g., expression grammar)

– Leads to infinite looping/recursion in a top-down parser

– To fix, unroll the recursion into a new non-terminal

– Practical note (P2): A and A’ can be a single function in your code
● Parse one β, then continue parsing α’s until there are no more
● Keep adding the previous parse tree as a left subnode of the new parse tree

A → A α
 | β

A → β A'

A' → α A'
 | ε

Left Factoring

● Common prefix: A → α β
1
 | α β

2
 ...

– Leads to ambiguous rule choice in a top-down parser
● One lookahead (α) is not enough to pick a rule; backtracking is required

– To fix, left factor the choices into a new non-terminal

– Practical note (P2): A and A’ can be a single function in your code
● Parse and save data about α in temporary variables until you have

enough information to choose

A → α β
1

 | α β
2

 ...

A → α A'

A' → β
1

 | β
2

 ...

Examples

● Eliminating left recursion:

● Left factoring:

E → E + T
 | E - T
 | T

E → T E'

E' → + T E’
 | - T E’
 | ε

C → if E B else B fi
 | if E B fi

C → if E B C’

C' → else B fi
 | fi

LL(1) Parsing

● LL(1) parsers can also be auto-generated
– Similar to auto-generated lexers

– Tables created by a parser generator using FIRST and
FOLLOW helper sets

– These sets are also useful when building hand-written
recursive descent parsers

● And (as we’ll see next week), when building SLR parsers

LL(1) Parsing

● FIRST(α)

– Set of terminals (or ε) that can appear at the start of a
sentence derived from α (a terminal or non-terminal)

● FOLLOW(A) set

– Set of terminals (or $) that can occur immediately after non-
terminal A in a sentential form

● FIRST+(A → β)

– If ε is not in FIRST(β)

● FIRST+(A) = FIRST(β)
– Otherwise

● FIRST+(A) = FIRST(β) FOLLOW(A)∪

Useful for choosing which
rule to apply when
expanding a non-terminal

Calculating FIRST(α)

● Rule 1: α is a terminal a
– FIRST(a) = { a }

● Rule 2: α is a non-terminal X
– Examine all productions X → Y1 Y2 ... Yk

● add FIRST(Y
1
) if not Y

1
 →* ε

● add FIRST(Y
i
) if Y

1
 ... Y

j
 →* ε, where j = i-1 (i.e., skip disappearing symbols)

– FIRST(X) is union of all of the above

● Rule 3: α is a non-terminal X and X → ε
– FIRST(X) includes ε

Calculating FOLLOW(B)

● Rule 1: FOLLOW(S) includes EOF / $

– Where S is the start symbol

● Rule 2: for every production A → α B β

– FOLLOW(B) includes everything in FIRST(β) except ε

● Rule 3: if A → α B or (A → α B β and FIRST(β) contains ε)

– FOLLOW(B) includes everything in FOLLOW(A)

Example

● FIRST and FOLLOW sets:

A → x A x
 | y B y
B → C m
 | C
C → t

FIRST+(A → x A x) = { x }
FIRST+(A → y B y) = { y }
 (disjoint: this is ok)

FIRST+(B → C m) = { t }
FIRST+(B → C) = { t }
 (not disjoint: requires backtracking!)

FOLLOW(A) = { x, $ }
FOLLOW(B) = { y }
FOLLOW(C) = { y, m }

FIRST(x) = { x }
FIRST(y) = { y }

FIRST(A) = { x , y }
FIRST(B) = { t }
FIRST(C) = { t }

Aside: abstract syntax trees

A

V E

E

V

V+

=

A → V = E ;
E → E + V
 | V
V → a | b | c

A (=)

V (a) E (+)

V (b) V (c)

Parse tree: Abstract syntax tree:

;

Grammar:

a

b

c

In P2, you will build an AST, not a parse tree!

Example expression parser

● Available on stu:
/cs/students/cs432/f24/expr_parser.tar.gz

● Grammar (converted to LL):

E → T E'

E' → + T E'

 | e

T → F T'

T' → * F T'

 | e

F → (E)

 | {DEC}

Aside: Parser combinators

● A parser combinator is a higher-order function for parsing

– Takes several parsers as inputs, returns new parser as output

– Allows parser code to be very close to grammar

– (Relatively) recent development: ‘90s and ‘00s

– Example: Parsec in Haskell

whileStmt :: Parser Stmt
whileStmt =
 do keyword "while"
 cond <- expression
 keyword "do"
 stmt <- statement
 return (While cond stmt)

assignStmt :: Parser Stmt
assignStmt =
 do var <- identifier
 operator ":="
 expr <- expression
 return (Assign var expr)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

