

CS 432
Fall 2024

Mike Lam, Professor

Regular Expressions
and

Finite Automata

a|(bc)*

https://xkcd.com/1171/

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"Current
focus

Lexical Analysis

● Lexemes or tokens: the smallest building blocks of a
language's syntax

● Lexing or scanning: the process of separating a character
stream into tokens

total = sum(vals) / n

total identifier
= equals_op
sum identifier
(left_paren
vals identifier
) right_paren
/ divide_op
n identifier

char *str = "hi";

char keyword
* star_op
str identifier
= equals_op
"hi" str_literal
; semicolon

Discussion question

● What is a language?

Language

● A language is "a (potentially infinite) set of
strings over a finite alphabet"

Discussion question

● How do we describe languages?

xyy
xy
xyyzzz
xyz
xyzz
xyyzz
xyyz
xyzzz
(etc.)

xy
xyy
xyz
xyyz
xyzz
xyyzz
xyzzz
xyyzzz
(etc.)

xy xyy
xyz xyyz
xyzz xyyzz
xyzzz xyyzzz
(etc.)

Language description

● Ways to describe languages
– Ad-hoc prose

● “A single ‘x’ followed by one or two ‘y’s followed by
any number of ‘z’s”

– Formal regular expressions (current focus)
● x(y|yy)z*

– Formal grammars (in two weeks)
● A → x B C
● B → y | y y
● C → z C | ε

Languages

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

Most useful
for compilers

● Alphabet:

– Σ = { finite set of all characters }

● Language:

– L = { potentially infinite set of sequences of characters from Σ }

Regular expressions

● Regular expressions describe regular languages

– Can also be thought of as generalized search patterns

● Three basic recursive operations:

– Alternation: A|B

– Concatenation: AB or A˽B

– ("Kleene") Closure: A*

● Extended constructs:

– Character sets/classes: [0-9] ≡ [0...9] ≡ 0|1|2|3|4|5|6|7|8|9

– Repetition / positive closure: A2 ≡ AA A3 ≡ AAA A+ ≡ AA*

– Grouping: (A|B)C ≡ AC|BC These are not covered extensively in your textbook!

Lowest precedence

Highest precedence

Additionally: ε is a
regex that matches
the empty string

Regular expressions

● Symbols with special meaning in regular expressions must
be “escaped” to match the actual symbol

– E.g., a* matches an “a” followed by an asterisk (“*”)

– This is not usually necessary inside a character class
● E.g., a[*] ≡ a*

● Alternation of character classes can be condensed

– E.g., [a-z]|[A-Z] ≡ [a-zA-Z]

● Starting a character class with a caret (“^”) forms the
complement

– E.g., [^abc] matches any character that is NOT “a”, “b”, or “c”

– Outside a character class, ^ matches the beginning of a string and
$ matches the end of a string

Discussion question

● How would you implement regular expressions?
– Given a regular expression and a string, how would you

tell whether the string belongs to the language
described by the regular expression?

Lexical Analysis

● Implemented using state machines (finite automata)
– Set of states with a single start state

– Transitions between states on inputs (w/ implicit dead states)

– Some states are final or accepting

a
a

a

b

a b

a|b ab

Lexical Analysis

● Deterministic vs. non-deterministic
– Non-deterministic: multiple possible states for given sequence

– One edge from each state per character (deterministic)
● Might lead to implicit “dead state” w/ self-loop on all characters

– Multiple edges from each state per character (non-deterministic)

– “Empty” or ε-transitions (non-deterministic)

a a

a

Deterministic (DFA)
Non-deterministic (NFA)

Deterministic finite automata

● Formal definition

S: set of states

Σ: alphabet (set of characters)

δ: transition function: (S, Σ) → S

s
0
: start state

S
A
: accepting/final states

● Acceptance algorithm

 s := s0

 for each input c:

 s := δ(s,c)

 return s ∈ SA

a

S = { s1, s2 }
Σ = { a }
δ = { (s1, a → s2), (s2, a → Ø) }
s0 = s1

SA = { s2 }

s1 s2

a

s1 s2

s2 Ø

Alternative δ representation:

Non-deterministic finite automata

● Formal Definition

– S, Σ, s
0
, and S

A
 same as DFA

– δ: (S, Σ {ε}) →∪ [S]

– ε-closure: all states reachable from s via ε-transitions

● Formally: ε-closure(s) = {s} ∪ { t S | (s, ε)→t δ }∈ ∈

● Extended to sets by union over all states in set

● Acceptance algorithm

 T := ε-closure(s0)

 for each input c:

 N := {}

 for each s in T:

 N := N ∪ ε-closure(δ(s,c))

 T := N

 return |T ∩ SA| > 0

Summary

 accept():

 T := ε-closure(s0)

 for each input c:

 N := {}

 for each s in T:

 N := N ∪ ε-closure(δ(s,c))

 T := N

 return |T ∩ SA| > 0

 accept():

 s := s0

 for each input c:

 s := δ(s,c)

 return s ∈ SA

● S: set of states

● Σ: alphabet (set of characters)

● δ: transition function: (S, Σ) → S

● s0: start state

● SA: accepting/final states

● δ may return a set of states
● δ may contain ε-transitions

DFAs NFAs

Equivalence

● A regular expression and a finite automaton are equivalent if
they recognize the same language

– Same applies between different REs and between different FAs

● Regular expressions, NFAs, and DFAs all describe the same
set of languages

– "Regular languages" from Chomsky hierarchy

● Next week, we will learn how to convert between them

Lexical Analysis

● Examples:

a

b

ab

a b

a*

a

a b
a(bc|c*)

c

c

c

a

b

aa*|b

a

a|b

ab*

a

b

Examples

Multi-line comments

Unsigned integers

Identifiers

Exercise

● Construct state machines for the following
regular expressions:

(a|b|c)(ab|bc)x*yz* 1(1|0)* 1(10)*

(dd*.d*)|(d*.dd*) ← ε-transitions may make this one slightly easier

Application

● P1: Use POSIX regular expressions to tokenize Decaf files
– Process the input one line at a time

– Generally, create one regex per token type
● Each regex begins with “^” (only match from beginning)
● Prioritize regexes and try each of them in turn
● When you find a match, extract the matching text
● Repeat until no match is found or the input is consumed

– Less efficient than an auto-generated lexer
● However, it is simpler to understand
● Our approach to P2 will be similar

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

