## CS 432 Fall 2024

Mike Lam, Professor









https://xkcd.com/1171/



## Regular Expressions and Finite Automata

# Compilation



## Lexical Analysis

- Lexemes or tokens: the smallest building blocks of a language's syntax
- Lexing or scanning: the process of separating a character stream into tokens

```
total = sum(vals) / n
                                   char *str = "hi";
total
          identifier
                                   char
                                             keyword
          equals_op
                                             star_op
          identifier
                                             identifier
sum
                                   str
          left_paren
                                             equals_op
vals
          identifier
                                   "hi"
                                             str_literal
          right_paren
                                             semicolon
          divide_op
          identifier
n
```

# Discussion question

• What is a *language*?

## Language

 A language is "a (potentially infinite) set of strings over a finite alphabet"

## Discussion question

How do we describe languages?

| хуу    |
|--------|
| xy     |
| XYYZZZ |
| xyz    |
| xyzz   |
| xyyzz  |
| xyyz   |
| xyzzz  |
| (etc.) |

```
xy
xyy
xyz
xyyz
xyzz
xyyzz
xyzzz
xyyzzz
(etc.)
```

```
xy xyy
xyz xyyz
xyzz xyyzz
xyzzz xyyzzz
(etc.)
```

## Language description

- Ways to describe languages
  - Ad-hoc prose
    - "A single 'x' followed by one or two 'y's followed by any number of 'z's"
  - Formal regular expressions (current focus)
    - x(y|yy)z\*
  - Formal grammars (in two weeks)
    - A → x B C
    - B → y | y y
    - C → Z C | E

## Languages

### **Chomsky Hierarchy of Languages**



- Alphabet:
  - $\Sigma$  = { finite set of all characters }
- Language:
  - L = { potentially infinite set of sequences of characters from  $\Sigma$  }

# Regular expressions

- Regular expressions describe regular languages
  - Can also be thought of as generalized search patterns
- Three basic recursive operations:
  - Alternation: A|B Lowest precedence
  - Concatenation: AB or A\_B
  - ("Kleene") Closure: A\* Highest precedence

Additionally: ε is a regex that matches the empty string

- Extended constructs:
  - Character sets/classes:  $[0-9] \equiv [0...9] \equiv 0|1|2|3|4|5|6|7|8|9$
  - Repetition / positive closure:  $A^2 \equiv AA$   $A^3 \equiv AAA$   $A^+ \equiv AA^*$
  - Grouping:  $(A|B)C \equiv AC|BC$

## Regular expressions

- Symbols with special meaning in regular expressions must be "escaped" to match the actual symbol
  - E.g., al\* matches an "a" followed by an asterisk ("\*")
  - This is not usually necessary inside a character class
    - E.g.,  $a[*] = a^*$
- Alternation of character classes can be condensed
  - E.g., [a-z]|[A-Z]  $\equiv$  [a-zA-Z]
- Starting a character class with a caret ("^") forms the complement
  - E.g., [^abc] matches any character that is **NOT** "a", "b", or "c"
  - Outside a character class, ^ matches the beginning of a string and
     \$ matches the end of a string

## Discussion question

- How would you implement regular expressions?
  - Given a regular expression and a string, how would you tell whether the string belongs to the language described by the regular expression?

## Lexical Analysis

- Implemented using state machines (finite automata)
  - Set of states with a single start state
  - Transitions between states on inputs (w/ implicit dead states)
  - Some states are final or accepting



## Lexical Analysis

- Deterministic vs. non-deterministic
  - Non-deterministic: multiple possible states for given sequence
  - One edge from each state per character (deterministic)
    - Might lead to implicit "dead state" w/ self-loop on all characters
  - Multiple edges from each state per character (non-deterministic)
  - "Empty" or ε-transitions (non-deterministic)



a

**Deterministic (DFA)** 

Non-deterministic (NFA)

## Deterministic finite automata

#### Formal definition

S: set of states

 $\Sigma$ : alphabet (set of characters)

δ: transition function: (S, Σ)  $\rightarrow$  S

s<sub>0</sub>: start state

S<sub>A</sub>: accepting/final states

### Acceptance algorithm

$$s := s_0$$

**for each input** c:

$$s := \delta(s,c)$$

return  $s \in S_A$ 



$$S = \{ s1, s2 \}$$
  
 $\Sigma = \{ a \}$   
 $\delta = \{ (s1, a \rightarrow s2), (s2, a \rightarrow \emptyset) \}$   
 $s_0 = s1$   
 $S_A = \{ s2 \}$ 

### Alternative $\delta$ representation:



## Non-deterministic finite automata

#### Formal Definition

- S,  $\Sigma$ ,  $s_0$ , and  $S_A$  same as DFA
- δ: (S, Σ ∪ {ε})  $\rightarrow$  [S]
- ε-closure: all states reachable from s via ε-transitions
  - Formally:  $\epsilon$ -closure(s) = {s}  $\cup$  { t  $\in$  S | (s,  $\epsilon$ )  $\rightarrow$  t  $\in$  δ }
  - Extended to sets by union over all states in set

#### Acceptance algorithm

```
T := \varepsilon-closure(s_0)

for each input c:

N := \{\}

for each s in T:

N := N \cup \varepsilon-closure(\delta(s,c))

T := N

return |T \cap S_A| > 0
```

## Summary

### **DFAs**

- S: set of states
- Σ: alphabet (set of characters)
- $\delta$ : transition function: (S,  $\Sigma$ )  $\rightarrow$  S
- s<sub>0</sub>: start state
- S<sub>Δ</sub>: accepting/final states

## accept():

$$s := s_0$$

**for each input** *c*:

$$s := \delta(s,c)$$

return  $s \in S_A$ 

### **NFAs**

- $\delta$  may return a set of states
- $\delta$  may contain  $\epsilon$ -transitions

### accept():

```
T := \varepsilon-closure(s_0)
```

**for each input** c:

$$N := \{ \}$$

for each s in T:

$$N := N \cup \varepsilon$$
-closure( $\delta(s,c)$ )

$$T := N$$

return 
$$|T \cap S_A| > 0$$

## Equivalence

- A regular expression and a finite automaton are equivalent if they recognize the same language
  - Same applies between different REs and between different FAs
- Regular expressions, NFAs, and DFAs all describe the same set of languages
  - "Regular languages" from Chomsky hierarchy
- Next week, we will learn how to convert between them

# Lexical Analysis

Examples:



# Examples

### **Unsigned integers**

$$0 | [1...9] [0...9]^*$$



#### **Identifiers**

$$([A...Z] | [a...z]) ([A...Z] | [a...z] | [0...9])^*$$



### **Multi-line comments**



## Exercise

 Construct state machines for the following regular expressions:

```
x*yz* 1(1|0)* 1(10)* (a|b|c)(ab|bc)

(dd*.d*)|(d*.dd*) \leftarrow ε-transitions may make this one slightly easier
```

## Application

- P1: Use POSIX regular expressions to tokenize Decaf files
  - Process the input one line at a time
  - Generally, create one regex per token type
    - Each regex begins with "^" (only match from beginning)
    - Prioritize regexes and try each of them in turn
    - When you find a match, extract the matching text
    - Repeat until no match is found or the input is consumed
  - Less efficient than an auto-generated lexer
    - However, it is simpler to understand
    - Our approach to P2 will be similar

Source code

**Tokens** 

