CS 432 Fall 2024

https://xkcd.com/1171/

Mike Lam, Professor

 $a/(bc)^*$

Regular Expressions and Finite Automata

Compilation

Lexical Analysis

- Lexemes or tokens: the smallest building blocks of a language's syntax
- Lexing or scanning: the process of separating a character stream into tokens

Discussion question

● What is a *language*?

Language

• A language is "a (potentially infinite) set of strings over a finite alphabet"

Discussion question

• How do we describe languages?

Language description

- Ways to describe languages
	- Ad-hoc prose
		- "A single 'x' followed by one or two 'y's followed by any number of 'z's"
	- Formal regular expressions (current focus)
		- $x(y|yy)z^*$
	- Formal grammars (in two weeks)
		- \bullet A \rightarrow x B C
		- \bullet B \rightarrow y | y y
		- \bullet C \rightarrow Z C ϵ

Languages

Chomsky Hierarchy of Languages

- Alphabet:
	- $\overline{}$ = { finite set of all characters }
- Language:
	- L = { potentially infinite set of sequences of characters from Σ }

Regular expressions

- Regular expressions describe regular languages
	- Can also be thought of as generalized search patterns
- Three basic recursive operations:
	- Alternation: **A|B**

Lowest precedence

Highest precedence

- Concatenation: **AB** *or* **A˽B**
- ("Kleene") Closure: **A***

Additionally: ε is a regex that matches the empty string

- Extended constructs:
	- Character sets/classes: **[0-9]** ≡ **[0...9]** ≡ **0|1|2|3|4|5|6|7|8|9**
	- $-$ Repetition / positive closure: $A^2 \equiv AA$ $A^3 \equiv AAA$ $A^* \equiv AA^*$
	- Grouping: **(A|B)C** ≡ **AC|BC These are not covered extensively in your textbook!**

Regular expressions

- Symbols with special meaning in regular expressions must be "escaped" to match the actual symbol
	- E.g., **a*** matches an "a" followed by an asterisk ("*")
	- This is not usually necessary inside a character class
		- E.g., **a[*]** ≡ **a***
- Alternation of character classes can be condensed
	- E.g., **[a-z]|[A-Z]** ≡ **[a-zA-Z]**
- Starting a character class with a caret $("^n")$ forms the complement
	- E.g., **[^abc]** matches any character that is **NOT** "a", "b", or "c"
	- Outside a character class, **^** matches the beginning of a string and **\$** matches the end of a string

Discussion question

- How would you implement regular expressions?
	- Given a regular expression and a string, how would you tell whether the string belongs to the language described by the regular expression?

Lexical Analysis

- Implemented using state machines (finite automata)
	- Set of states with a single start state
	- Transitions between states on inputs (w/ implicit dead states)
	- Some states are final or accepting

Lexical Analysis

- Deterministic vs. non-deterministic
	- Non-deterministic: multiple possible states for given sequence
	- One edge from each state per character (deterministic)
		- Might lead to implicit "dead state" w/ self-loop on all characters
	- Multiple edges from each state per character (non-deterministic)
	- "Empty" or ε-transitions (non-deterministic)

Deterministic finite automata

- Formal definition
	- S: set of states
	- Σ: alphabet (set of characters)
	- δ: transition function: $(S, \Sigma) \rightarrow S$
	- s₀: start state
	- S_{A} : accepting/final states
- Acceptance algorithm

 $s := s_0$ *for each input c*:

$$
s:=\delta(s,c)
$$

return $s \in S_A$

$$
S = \{ s1, s2 \}
$$

\n
$$
\Sigma = \{ a \}
$$

\n
$$
\delta = \{ (s1, a \rightarrow s2), (s2, a \rightarrow \emptyset) \}
$$

\n
$$
s_0 = s1
$$

\n
$$
S_A = \{ s2 \}
$$

Alternative δ representation:

Non-deterministic finite automata

- Formal Definition
	- $\,$ S, Σ, $\rm s_{o}$, and $\rm S_{A}$ same as DFA
	- $-$ δ: (S, Σ ∪ {ε}) → [S]
	- ε-closure: all states reachable from s via ε-transitions
		- Formally: ε-closure(s) = {s} \cup { t \in S | (s, ε) \rightarrow t \in δ }
		- Extended to sets by union over all states in set
- Acceptance algorithm

```
T := ε-closure(s_0)
for each input c:
 N := \{\} for each s in T:
    N := N ∪ ε-closure(δ(s,c))
 T := N return |T ∩ SA| > 0
```
Summary

DFAs NFAs

- S: set of states
- Σ : alphabet (set of characters)
- δ: transition function: $(S, \Sigma) \rightarrow S$
- s_0 : start state
- $S_{\scriptscriptstyle\mathsf{A}}$: accepting/final states

accept():

 $s := s_0$

for each input c:

 $s := \delta(s,c)$ *return* $s \in S_A$

- \cdot δ may return a set of states
- \cdot δ may contain ε-transitions

accept(): $T := ε$ -*closure*(s_0) *for each input c*: $N := \{\}$ *for each s in T*: $N := N ∪ ε$ *-closure*($δ(s,c)$) $T := N$ *return |T ∩ SA| > 0*

Equivalence

- A regular expression and a finite automaton are equivalent if they recognize the same language
	- Same applies between different REs and between different FAs
- Regular expressions, NFAs, and DFAs all describe the same set of languages
	- "Regular languages" from Chomsky hierarchy
- Next week, we will learn how to convert between them

Lexical Analysis

● Examples:

Examples

Unsigned integers

 $0[[1..9][0..9]^*]$

Identifiers

 $([A...Z] | [a...z]) ([A...Z] | [a...z] | [0...9])^*$

Multi-line comments

$$
/\! \star (\, \hat{}\, \star \, |\, \star^+ \, \hat{}\, \, / \,)^\ast \, \star /
$$

Exercise

• Construct state machines for the following regular expressions:

> **x*yz* 1(1|0)* 1(10)* (a|b|c)(ab|bc) (dd*.d*)|(d*.dd*)** ← ε-transitions may make this one slightly easier

Application

- P1: Use POSIX regular expressions to tokenize Decaf files
	- Process the input one line at a time
	- Generally, create one regex per token type
		- Each regex begins with "[^]" (only match from beginning)
		- Prioritize regexes and try each of them in turn
		- When you find a match, extract the matching text
		- Repeat until no match is found or the input is consumed
	- Less efficient than an auto-generated lexer
		- However, it is simpler to understand
		- Our approach to P2 will be similar

