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I Instruction Scheduling

* Modern architectures expose many opportunities for optimization

— Some instructions require fewer cycles

— Superscalar processing (multiple functional units)

— Instruction pipelining
— Speculative execution

* Primary obstacle: data dependencies

- Astall is a delay caused by having to wait for an operand to load
* Scheduling: re-order instructions to improve performance

- Maximize utilization and prevent stalls
— Must not modify program semantics
— Main algorithm: list scheduling
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https://en.wikipedia.org/wiki/Superscalar_processor



I Data Dependence

 Datadependency (x=_,;_ =X)

- Read after write

- Hard constraint
* Antidependency (_ =x; x =_)

- Write after read (not generally present in SSA form)

- Can rename second “x” to avoid (could require more register spills)
* Dependency graph

— One for each basic block
« Could have multiple roots; technically a forest of directed acyclic graphs (DAGS)
— Nodes for each instruction

- Edges represent data dependencies
« Edge (n, n,) means that n, must be done when n, runs
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I Example

ri

* Which program is preferable? v
« Assumptions: el L
- Loads and stores have a 3-cycle latency }{ rs
— Multiplications have a 2-cycle latency \|Ar6A|/
— All other instructions have a 1-cycle latency
| 8

loadAI [BP-4] => r1

1 loadAI [BP-4] => r1
4 add r1, r1 => r2

)

8

1
2 loadAI [BP-8] => r3
loadAI [BP-8] => r3 3 loadAI [BP-12] => r5
mult r2, r3 => r4 4 add ri1, rl1 => r2
9 loadAI [BP-12] => r5 5 mult r2, r3 =>r4
12 mult r4, r5 => ré6 6 loadAI [BP-16] => r7
13 loadAI [BP-16] => r7 7 mult r4, r5 => ré6
16 mult r6, r7 =>r8 9 mult r6, r7 => r8
1

18 store AI r8 => [BP-20] 1 store AI r8 => [BP-20]



I Schedules

e A schedule is a list of instructions In start/issue order

- Sometimes with “idle” cycles (no new instructions) marked with “-

- Example: “a, b, -, c, -, -” means “start instruction a on cycle one,

b on cycle two, nothing on cycle three, c on cycle four, and then
wait two more cycles for everything to finish”

1 a) loadAI [BP-4] =>r1 1 a) loadAI [BP-4] => r1

4 b) add r1, r1 => r2 2 c) loadAI [BP-8] => r3

5 c) loadAI [BP-8] => r3 3 e) loadAI [BP-12] => r5

8 d) mult r2, r3 =>r4 4 b) add r1, r1 => r2

9 e) loadAI [BP-12] => r5 5 d) mult r2, r3 =>r4

12 f) mult r4, r5 => ré6 6 g) loadAI [BP-16] => r7

13 g) loadAI [BP-16] => r7 7 f) mult r4, r5 => r6

16 h) mult r6, r7 => r8 9 h) mult r6, r7 => r8

18 1) storeAI r8 => [BP-20] 11 1) store AI r8 => [BP-20]
2:5:::?:ﬁ:::;—:(j:?,-,-, a,c,e,b,d,g,f,-,h,-,i,-,-



Jl List Scheduling

* Prep work

- Rename to avoid antidependencies
- Build data dependence graph

— Assign priority for each instruction

» Usually based on node height and instruction latency

— Priority of a leaf node is its latency

— Priority of a branch node is its latency plus the maximum priority of
any immediate successor

* Goal: prioritize instructions on the critical path
- Longest-latency path through the graph



Jl List Scheduling

* Track a set of "ready" instructions
- No remaining unresolved data dependencies; i.e., can be scheduled
* For each cycle:

— Check all currently executing instructions for any that have finished
* Add any new "ready" dependents to set
— Start executing a new "ready" instruction (if there are any)

* Greedy algorithm: if multiple instructions are ready, choose the one with the
highest priority

» Helps to note the cycle where the instruction will finish



I Example

* Schedule the following code:

- Loads and stores have a 3-cycle latency
— Multiplications have a 2-cycle latency
— All other instructions have a 1-cycle latency

CYCLE READY START [DONE]

[1] a) loadAI [BP-4] => r2 [1] a,c,g ¢C
[4] b) storeAI r2 => [BP-8] [2] a,9 a
[5] c) loadAI [BP-12] => r3 [i] ’ ’
(8]  d) add r3, ra => r3 o
[9] e) add r3, r2 => r3 [6] b:f b
[10] f) storeAI r3 => [BP-16] [7] £ £
[11] g) storeAI r7 => [BP-20] [3] -
[9]
Original schedule:
al-l-lblcl-l-ldlelflgl-l- New schedule:

(13 CyC|ES) clalgldlelblfl'r'

[3]
[4]
[5]
[4]
[5]
[8]
[9]
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(9 cycles)




CYCLE READY START [DONE] DONE

[1] a) loadAI [BP-4] => r2 [1] a,c,g c [3]

[4] b) storeAI r2 => [BP-8] [2] a, g a [4]

[5] c) loadAI [BP-12] => r3 m 9 g m °

[8] d) add r3, r4 => r3 (5] b e e [5] e'g

[9] e) add r3, r2 => r3 [6] b:f b [8] '

[10] f) storeAI r3 => [BP-16] [7] £ f [9]

[11] g) storeAI r7 => [BP-20] [3] b
[9] f

Original schedule:
al'l'Iblcl'l'ldlelflgl'l' New schedule:
(13 cycles) c,a,g,d,e,b,f,-,- (9cycles)



I Instruction Priorities

* Usually based on node height and latency first
— Minimizes critical path
* Many methods for tie-breaking

- Node's rank (# of successors; breadth-first search)
— Node's descendant count

- Latency (maximize resource efficiency)

— Resource ordering (maximize resource efficiency)
— Source code ordering (minimize reordering)

— No clear winner here!



I Tradeoffs

* Forward vs. backward list scheduling

- Backward scheduling: build schedule in reverse

* Choose last instruction on critical path first
 Schedule from roots to leaves instead of leaves to roots
* Similar to backward data flow analysis

— List scheduling is cheap; just run several variants to
see which works better for particular code segments



I Tradeoffs

* Instruction scheduling vs. register allocation

- Fewer registers — more sequential code
- More registers — more possibilities for parallelism
— Scheduling can also impact number of spills/loads

sl &2

Fewer registers required (2) More registers required (3)
More sequential (max latency = 6) Less sequential (max latency = 5)




I Regional scheduling

* Usually based on local list scheduling

* Extended using various techniques

- Analyze extended basic blocks (chains of basic blocks)
— Detect hot traces or paths using profile information

- Sometimes need to insert compensation code

- Sometimes need to clone entire blocks

* Particularly important for loops

— Focus on core kernel of the loop
— Constrained by loop-carried dependencies



I Exercise

* Schedule this program from earlier

e Assumptions:

- Loads and stores have a 3-cycle latency
— Multiplications have a 2-cycle latency
— All other instructions have a 1-cycle latency

loadAI [BP-4] => r1
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
storeAl r8 => [BP-20]
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I Exercise
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* Schedule this program from earlier 10

e Assumptions:

- Loads and stores have a 3-cycle latency

— Multiplications have a 2-cycle latency \AA/S
— All other instructions have a 1-cycle latency :
i] 3
a) loadAI [BP-4] =>r1 CYC RDY START [DONE] DONE
b) add r1, r1 => r2 1 a,c,e,g a [3]
c) loadAI [BP-8] => r3 2 ¢eq c [4]
- 3 e, g e [5] a
d) mult r2, r3 =>r4 4 b, g b [4] b,c
e) loadAI [BP-12] => r5 5 d, g d [6] e
f) mult r4, r5 => ré6 6 g g [8] d
g) loadAI [BP-16] => r7 bt 8] -
h) mult r6, r7 => r8 o h h [10] '
1) storeAl r8 => [BP-20] 10 - h
11 i i [13]
12 -
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