- 'rlht;-'-.-.wwﬁr“-“-u;“dn.-.rhn--im_uﬁuu el

CS 482 meneming
Fall 2023 e e

NSCC 2012 0| amme e

Mike Lam, Professor === =====

https://xkcd.com/1542/

List Scheduling

Compilers

Checked AST
Source code Tokens Syntax tree
y + Symtables
int main() { EEEED E
| = B o= = @ om
return Xx; DDDD
ooooo
oono
Lexing Parsing Analysis
(P2) (P3) (P4)
Checked AST t Current BN
. imized :
+ Symtables Linear IR "'(I?il?\ear IR focus Machine code
= "ronat 4 = C s
E i r;,_;zR:: r3 addI ri, 5 = RET 99 00 00 00 00
IR Code Gen Optimization.. Machine
(P5) Passes Code Gen

-
~ . f‘
~
-~
-
-~

—‘—
-
-
-
- -

I Instruction Scheduling

* Modern architectures expose many opportunities for optimization

— Some instructions require fewer cycles

— Superscalar processing (multiple functional units)

— Instruction pipelining
— Speculative execution

* Primary obstacle: data dependencies

- Astall is a delay caused by having to wait for an operand to load
* Scheduling: re-order instructions to improve performance

- Maximize utilization and prevent stalls
— Must not modify program semantics
— Main algorithm: list scheduling

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

|i

t

—

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

https://en.wikipedia.org/wiki/Superscalar_processor

I Data Dependence

 Datadependency (x=_,;_ =X)

- Read after write

- Hard constraint
* Antidependency (_ =x; x =_)

- Write after read (not generally present in SSA form)

- Can rename second “x” to avoid (could require more register spills)
* Dependency graph

— One for each basic block
« Could have multiple roots; technically a forest of directed acyclic graphs (DAGS)
— Nodes for each instruction

- Edges represent data dependencies
« Edge (n, n,) means that n, must be done when n, runs

Tleqo

RV-AR-V{

I Example

ri

* Which program is preferable? v
« Assumptions: el L
- Loads and stores have a 3-cycle latency }{ rs
— Multiplications have a 2-cycle latency \|Ar6A|/
— All other instructions have a 1-cycle latency
| 8

loadAI [BP-4] => r1

1 loadAI [BP-4] => r1
4 add r1, r1 => r2

)

8

1
2 loadAI [BP-8] => r3
loadAI [BP-8] => r3 3 loadAI [BP-12] => r5
mult r2, r3 => r4 4 add ri1, rl1 => r2
9 loadAI [BP-12] => r5 5 mult r2, r3 =>r4
12 mult r4, r5 => ré6 6 loadAI [BP-16] => r7
13 loadAI [BP-16] => r7 7 mult r4, r5 => ré6
16 mult r6, r7 =>r8 9 mult r6, r7 => r8
1

18 store AI r8 => [BP-20] 1 store AI r8 => [BP-20]

I Schedules

e A schedule is a list of instructions In start/issue order

- Sometimes with “idle” cycles (no new instructions) marked with “-

- Example: “a, b, -, c, -, -” means “start instruction a on cycle one,

b on cycle two, nothing on cycle three, c on cycle four, and then
wait two more cycles for everything to finish”

1 a) loadAI [BP-4] =>r1 1 a) loadAI [BP-4] => r1

4 b) add r1, r1 => r2 2 c) loadAI [BP-8] => r3

5 c) loadAI [BP-8] => r3 3 e) loadAI [BP-12] => r5

8 d) mult r2, r3 =>r4 4 b) add r1, r1 => r2

9 e) loadAI [BP-12] => r5 5 d) mult r2, r3 =>r4

12 f) mult r4, r5 => ré6 6 g) loadAI [BP-16] => r7

13 g) loadAI [BP-16] => r7 7 f) mult r4, r5 => r6

16 h) mult r6, r7 => r8 9 h) mult r6, r7 => r8

18 1) storeAI r8 => [BP-20] 11 1) store AI r8 => [BP-20]
2:5:::?:ﬁ:::;—:(j:?,-,-, a,c,e,b,d,g,f,-,h,-,i,-,-

Jl List Scheduling

* Prep work

- Rename to avoid antidependencies
- Build data dependence graph

— Assign priority for each instruction

» Usually based on node height and instruction latency

— Priority of a leaf node is its latency

— Priority of a branch node is its latency plus the maximum priority of
any immediate successor

* Goal: prioritize instructions on the critical path
- Longest-latency path through the graph

Jl List Scheduling

* Track a set of "ready" instructions
- No remaining unresolved data dependencies; i.e., can be scheduled
* For each cycle:

— Check all currently executing instructions for any that have finished
* Add any new "ready" dependents to set
— Start executing a new "ready" instruction (if there are any)

* Greedy algorithm: if multiple instructions are ready, choose the one with the
highest priority

» Helps to note the cycle where the instruction will finish

I Example

* Schedule the following code:

- Loads and stores have a 3-cycle latency
— Multiplications have a 2-cycle latency
— All other instructions have a 1-cycle latency

CYCLE READY START [DONE]

[1] a) loadAI [BP-4] => r2 [1] a,c,g ¢C
[4] b) storeAI r2 => [BP-8] [2] a,9 a
[5] c) loadAI [BP-12] => r3 [i] ’ ’
(8] d) add r3, ra => r3 o
[9] e) add r3, r2 => r3 [6] b:f b
[10] f) storeAI r3 => [BP-16] [7] £ £
[11] g) storeAI r7 => [BP-20] [3] -
[9]
Original schedule:
al-l-lblcl-l-ldlelflgl-l- New schedule:

(13 CyC|ES) clalgldlelblfl'r'

[3]
[4]
[5]
[4]
[5]
[8]
[9]

ol

ole{o

DONE

® 9 O

~

« o

—h T

(9 cycles)

CYCLE READY START [DONE] DONE

[1] a) loadAI [BP-4] => r2 [1] a,c,g c [3]

[4] b) storeAI r2 => [BP-8] [2] a, g a [4]

[5] c) loadAI [BP-12] => r3 m 9 g m °

[8] d) add r3, r4 => r3 (5] b e e [5] e'g

[9] e) add r3, r2 => r3 [6] b:f b [8] '

[10] f) storeAI r3 => [BP-16] [7] £ f [9]

[11] g) storeAI r7 => [BP-20] [3] b
[9] f

Original schedule:
al'l'Iblcl'l'ldlelflgl'l' New schedule:
(13 cycles) c,a,g,d,e,b,f,-,- (9cycles)

I Instruction Priorities

* Usually based on node height and latency first
— Minimizes critical path
* Many methods for tie-breaking

- Node's rank (# of successors; breadth-first search)
— Node's descendant count

- Latency (maximize resource efficiency)

— Resource ordering (maximize resource efficiency)
— Source code ordering (minimize reordering)

— No clear winner here!

I Tradeoffs

* Forward vs. backward list scheduling

- Backward scheduling: build schedule in reverse

* Choose last instruction on critical path first
 Schedule from roots to leaves instead of leaves to roots
* Similar to backward data flow analysis

— List scheduling is cheap; just run several variants to
see which works better for particular code segments

I Tradeoffs

* Instruction scheduling vs. register allocation

- Fewer registers — more sequential code
- More registers — more possibilities for parallelism
— Scheduling can also impact number of spills/loads

sl &2

Fewer registers required (2) More registers required (3)
More sequential (max latency = 6) Less sequential (max latency = 5)

I Regional scheduling

* Usually based on local list scheduling

* Extended using various techniques

- Analyze extended basic blocks (chains of basic blocks)
— Detect hot traces or paths using profile information

- Sometimes need to insert compensation code

- Sometimes need to clone entire blocks

* Particularly important for loops

— Focus on core kernel of the loop
— Constrained by loop-carried dependencies

I Exercise

* Schedule this program from earlier

e Assumptions:

- Loads and stores have a 3-cycle latency
— Multiplications have a 2-cycle latency
— All other instructions have a 1-cycle latency

loadAI [BP-4] => r1
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
storeAl r8 => [BP-20]

H>Q O QOO TD
— N N N e N N

I Exercise

13

Ol
=
N

* Schedule this program from earlier 10

e Assumptions:

- Loads and stores have a 3-cycle latency

— Multiplications have a 2-cycle latency \AA/S
— All other instructions have a 1-cycle latency :
i] 3
a) loadAI [BP-4] =>r1 CYC RDY START [DONE] DONE
b) add r1, r1 => r2 1 a,c,e,g a [3]
c) loadAI [BP-8] => r3 2 ¢eq c [4]
- 3 e, g e [5] a
d) mult r2, r3 =>r4 4 b, g b [4] b,c
e) loadAI [BP-12] => r5 5 d, g d [6] e
f) mult r4, r5 => ré6 6 g g [8] d
g) loadAI [BP-16] => r7 bt 8] -
h) mult r6, r7 => r8 o h h [10] '
1) storeAl r8 => [BP-20] 10 - h
11 i i [13]
12 -

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

