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Compilers

int main() {
    int x
      = 4 + 5;
    return x;
}

Source code Tokens Syntax tree
Checked AST
+ Symtables

Lexing
(P2)

Parsing
(P3)

Analysis
(P4)

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

✓

✓ ✓

✓ ✓

main:
  loadI 4 => r1
  loadI 5 => r2
  add r1, r2 => r3
  i2i r3 => RET

Linear IR

main:
  loadI 4 => r1
  addI r1, 5 => RET

Optimized
Linear IR

IR Code Gen
(P5)

Optimization
Passes

Machine
Code Gen

Current
focus



  

Machine Code Gen (Ch. 11-13)

● Translate from (usually linear) IR to machine code
– Often, compilers will just emit assembly
– Use built-in system assembler and linker to create final executable

● Issues:
– Translation from IR instructions to machine code instructions

● Instruction selection (Ch. 11) - example in y86.c provided w/ P5

– Arrangement of machine code instructions for optimal pipelining
● Instruction scheduling (Ch. 12) - algorithm next week; no implementation

– Assignment of registers to minimize memory accesses
● Register allocation (Ch. 13) - primary focus of P5



  

Instruction Selection

● Choose machine code instructions to replace IR
– Complexity is highly dependent on target architecture
– CISC provides more options than RISC (e.g., x86 vs. ARM)

● Tradeoff: (possible) performance improvement vs. compiler complexity

● Algorithms:
– Treewalk routine (similar to P4)
– Tree-pattern matching / tiling (variant implemented in y86.c in P5)

leaq 0x8(%rax,%rcx,4), %rdx

d = a + c*4 + 8
multI c, 4 => t1
add a, t1 => t2
addI t2, 8 => d

mov  %rcx, %rdi
imul   $4, %rdi
add  %rax, %rdi 
add    $8, %rdi

Source Language Intermediate 
Representation (IR)

Target Language



  

Instruction Scheduling

● Modern CPUs expose many opportunities for optimization
– Some instructions require fewer cycles
– Instruction pipelining
– Branch prediction and speculative execution
– Multicore shared-memory processors

● Scheduling: re-order instructions to improve speed
– Must not modify program semantics
– Maximize utilization of CPU and memory resources
– Main algorithm: list scheduling (next week!)



  

Register Allocation

● Maximizing register use is very important
– Registers are the lowest-latency memory locations
– Issue: limited number of registers

● Everything not in registers must be stored in cache or main memory

– Need to reduce the # of registers used to match the target system
– Program using n registers => Program using m registers (n >> m)

● Allocation vs. assignment
– Allocation: map a virtual register space to a physical register space

● This is hard (NP-complete for any realistic situation)

– Assignment: map a valid allocation to actual register names
● This is easy (linear or polynomial)

Credit: CS:APP



  

Question

add:
  loadAI [bp+16] => r0
  loadAI [bp+24] => r1
  add r0, r1 => r2
  i2i r2 => ret
  return

main:
  loadI 3 => r3
  storeAI r3 => [bp-8]
  loadAI [bp-8] => r4
  loadI 2 => r5
  param r5
  param r4
  call add
  i2i ret => r6
  i2i r6 => ret
  return

● Which virtual registers should be allocated to “real” physical 
registers and which must be allocated elsewhere?



  

Local Allocation

● Top-down local register allocation
– Compute a priority for each virtual register

● Frequency of access to that register

– Sort by priority, highest to lowest
– Assign registers in order, highest priority first
– Rewrite the code

● General idea: prioritize most-often-accessed virtual registers
– Allocate to physical registers in priority order
– Very simple to implement
– Static per-block allocations are not always optimal

● Access patterns may change throughout block
● Especially in SSA form where registers aren’t often re-used



  

Local Allocation

● Bottom-up local register allocation
– Scan each block instruction-by-instruction

● Essentially, simulate running the program

– Maintain physical-to-virtual register mapping (“Name”)
● Initialize registers to empty (“INVALID”) at beginning of block

– For each instruction:
● Assign virtual registers to physical registers
● Ensure operands are in physical registers (load them if not)
● Greedy algorithm: choose best allocation available at each instruction

– Track next reference and free physical registers as soon as possible



  

Example

add:
  loadAI [bp+16] => __
  loadAI [bp+24] => __
  add __, __ => __
  i2i __ => ret
  return

add:
  loadAI [bp+16] => r0
  loadAI [bp+24] => r1
  add r0, r1 => r2
  i2i r2 => ret
  return

Suppose we have three physical registers:

Name[R0] = INVALID
Name[R1] = INVALID
Name[R2] = INVALID

r0 r2INVALID INVALID
r1 INVALID

R0
R1

R0 R1 R0
R0



  

Example

add:
  loadAI [bp+16] => R0
  loadAI [bp+24] => R1
  add R0, R1 => R0
  i2i R0 => ret
  return

main:
  loadI 3 => R0
  storeAI R0 => [bp-8]
  loadAI [bp-8] => R0
  loadI 2 => R1
  param R1
  param R0
  call add
  i2i ret => R0
  i2i R0 => ret
  return

add:
  loadAI [bp+16] => r0
  loadAI [bp+24] => r1
  add r0, r1 => r2
  i2i r2 => ret
  return

main:
  loadI 3 => r3
  storeAI r3 => [bp-8]
  loadAI [bp-8] => r4
  loadI 2 => r5
  param r5
  param r4
  call add
  i2i ret => r6
  i2i r6 => ret
  return

Only needed two physical registers for this example!



  

Example

gcd:
l1:
  loadAI [bp+24] => R0
  loadI 1 => R1
  cmp_GE R0, R1 => R0
  cbr R0 => l2, l3
l2:
  loadAI [bp+24] => R0
  loadI 0 => R1
  store R0 => [R1]
  loadAI [bp+16] => R0
  loadAI [bp+24] => R1
  div R0, R1 => R2
  mult R1, R2 => R1
  sub R0, R1 => R0
  storeAI R0 => [bp+24]
  loadI 0 => R0
  load [R0] => R0
  storeAI R0 => [bp+16]
  jump l1
l3:
  loadAI [bp+16] => R0
  i2i R0 => ret
  return

gcd:
l1:
  loadAI [bp+24] => r0
  loadI 1 => r1
  cmp_GE r0, r1 => r2
  cbr r2 => l2, l3
l2:
  loadAI [bp+24] => r3
  loadI 0 => r4
  store r3 => [r4]
  loadAI [bp+16] => r5
  loadAI [bp+24] => r6
  div r5, r6 => r7
  mult r6, r7 => r8
  sub r5, r8 => r9
  storeAI r9 => [bp+24]
  loadI 0 => r10
  load [r10] => r11
  storeAI r11 => [bp+16]
  jump l1
l3:
  loadAI [bp+16] => r12
  i2i r12 => ret
  return

What if we 
only had two 
physical 
registers?



  

Spilling

● If no physical registers are free, spill one!
– Store its value to memory and re-load it later
– For optimal results, spill register that will be accessed the 

furthest in the future
● Store Next[pr] for this purpose or just re-calculate when needed

● This is the hardest part of P5 (leave it for last!)
– Allocate slot in stack frame for each spilled register

● It’s essentially a new local variable

– Track the offset for each virtual register
– Emit load/store instructions as needed

● Significant helper code is provided!



  

Bottom-up local register allocation

gcd:
l1:
  loadAI [bp+24] => R0
  loadI 1 => R1
  cmp_GE R0, R1 => R0
  cbr R0 => l2, l3
l2:
  loadAI [bp+24] => R0
  loadI 0 => R1
  store R0 => [R1]
  loadAI [bp+16] => R0
  loadAI [bp+24] => R1
  div R0, R1 => ???
  mult R1, ??? => R1
  sub R0, R1 => R0
  storeAI R0 => [bp+24]
  loadI 0 => R0
  load [R0] => R0
  storeAI R0 => [bp+16]
  jump l1
l3:
  loadAI [bp+16] => R0
  i2i R0 => ret
  return

gcd:
l1:
  loadAI [bp+24] => r0
  loadI 1 => r1
  cmp_GE r0, r1 => r2
  cbr r2 => l2, l3
l2:
  loadAI [bp+24] => r3
  loadI 0 => r4
  store r3 => [r4]
  loadAI [bp+16] => r5
  loadAI [bp+24] => r6
  div r5, r6 => r7
  mult r6, r7 => r8
  sub r5, r8 => r9
  storeAI r9 => [bp+24]
  loadI 0 => r10
  load [r10] => r11
  storeAI r11 => [bp+16]
  jump l1
l3:
  loadAI [bp+16] => r12
  i2i r12 => ret
  return



  

Bottom-up local register allocation
gcd:
l1:
  loadAI [bp+24] => R0
  loadI 1 => R1
  cmp_GE R0, R1 => R0
  cbr R0 => l2, l3
l2:
  loadAI [bp+24] => R0
  loadI 0 => R1
  store R0 => [R1]
  loadAI [bp+16] => R0
  loadAI [bp+24] => R1
  storeAI R0 => [bp-8]  // store r5
  div R0, R1 => R0
  mult R1, R0 => R1
  loadAI [bp-8] => R0   // load r5
  sub R0, R1 => R0
  storeAI R0 => [bp+24]
  loadI 0 => R0
  load [R0] => R0
  storeAI R0 => [bp+16]
  jump l1
l3:
  loadAI [bp+16] => R0
  i2i R0 => ret
  return

gcd:
l1:
  loadAI [bp+24] => r0
  loadI 1 => r1
  cmp_GE r0, r1 => r2
  cbr r2 => l2, l3
l2:
  loadAI [bp+24] => r3
  loadI 0 => r4
  store r3 => [r4]
  loadAI [bp+16] => r5
  loadAI [bp+24] => r6
  div r5, r6 => r7
  mult r6, r7 => r8
  sub r5, r8 => r9
  storeAI r9 => [bp+24]
  loadI 0 => r10
  load [r10] => r11
  storeAI r11 => [bp+16]
  jump l1
l3:
  loadAI [bp+16] => r12
  i2i r12 => ret
  return



  

Full algorithm

for each instruction i in program:

    for each vr read in i:

        pr = Ensure(vr)

        replace vr with pr in i

        if vr is not needed after i then free pr

    for each vr written in i:

        pr = Allocate(vr)

        replace vr with pr in i

Ensure(vr):

    if vr is in pr:

        return pr

    else:

        pr = Allocate(vr)

        emit load from vr

        return pr

Allocate(vr):

    if pr is available:

        return pr

    else:

        find furthest-used pr to spill

        emit spill for pr

        return pr



  

Textbook vs. reference compiler

● Textbook algorithm uses a stack to store free registers
– Must remember to add registers to stack when freeing them
– O(1) access to a free register if one is available

● Reference compiler scans physical registers for first free one
– O(k) where k is number of physical registers, which is essentially a 

small constant
– Only need Name[pr]

● pr is free if Name[pr] == INVALID

TEXTBOOK:

  loadI 1 => R0
  loadI 2 => R1
  add R0, R1 => R1

REFERENCE:

  loadI 1 => R0
  loadI 2 => R1
  add R0, R1 => R0



  

Expression evaluation

● How many registers does it take to evaluate an 
arbitrary expression without any spilling?
– Is there an easy way to determine this?

For example:

a + b + c + d

vs.

(a+b) + (c+d)

a b

+ c

+ d

+
c da b

+ +

+



  

Expression evaluation

● How many registers does it take to evaluate an an arbitrary 
expression without any spilling?
– Examine the expression tree (e.g., parse tree)
– Calculate the Strahler number:

● If the node is a leaf (has no children), its Strahler number is one.
● If the node has one child with Strahler number i, and all other children have 

Strahler numbers less than i, then the Strahler number of the node is i.
● If the node has two or more children with Strahler number i, and no children 

with greater number, then the Strahler number of the node is i + 1.

Image from https://en.wikipedia.org/wiki/Strahler_number

a b

+ c

+ d

+

c da b

+ +

+
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https://en.wikipedia.org/wiki/Strahler_number


  

Systems design tradeoff

● Parallelism vs. register pressure
– Balanced trees provide more parallelism and (as we’ll see 

next week) better pipelining
● However, more spills => worse performance

– Unbalanced trees require fewer registers
● Fewer spills => better performance
● However, fewer opportunities for parallelism and pipelining

– Usually the parallelism is worth the increased register 
pressure

● Especially in the presence of forwarding and robust caches



  

Local vs. global allocation

● Local allocation handles each basic block separately
– Will miss inter-block dependencies

● Global allocation handles all basic blocks in a procedure
– Does NOT consider inter-procedural dependencies
– This is why calling conventions are important

● I.e., caller-save vs. callee-save and return value

● Decaf project
– Because we used SSA in P4 and always load/store to 

memory, no virtual registers will be live at the entrance or exit 
of any block (so no inter-block dependencies)

– Thus, we can use local register allocation in P5



  

Global Allocation

● Discover global live ranges of related uses and definitions
– For each use, any reaching definitions must be in the same range
– For each definition, any reachable uses must be in the same range
– Simple disjoint-set union-find algorithm over SSA form

● Build interference graph
– Node for each live range and edges between interfering live ranges

● Attempt to compute graph k-coloring
– k is the number of physical registers
– Greedy algorithm: order the colors (registers)

● For each vertex, choose smallest color not shared by neighbors

– If successful, done!
– If not successful, spill some values and try again

● Need a robust way to pick which values to spill
● Alternatively, split live ranges at carefully-chosen points



  

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1



  

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR1



  

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
2
: y=10

LR1 LR2



  

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR1 LR2

LR3



  

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR
4
: z=x+y

LR1 LR2

LR3 LR4



  

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR
4
: z=x+y

LR
5
: w=z+1

LR1 LR2

LR3 LR4

LR
5



  

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR
4
: z=x+y

LR
5
: w=z+1

LR1 LR2

LR3 LR4

LR
5



  

SC23 poster


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

