Data-Flow Analysis
int main() {
 int x = 4 + 5;
 return x;
}
```c
int a;
a = 0;
while (a < 10) {
    a = a + 1;
}
```

```assembly
loadI 0 => r1
loadI 10 => r2
l1:
    cmp_LT r1, r2 => r4
cbr r4 => l2, l3
l2:
    addI r1, 1 => r1
jump l1
l3:
    storeAI r1 => [bp-4]
loadI 10 => r1
storeAI r1 => [bp-4]
```
Optimization is Hard

- **Problem**: it's hard to reason about all possible executions
 - Preconditions and inputs may differ
 - Optimizations should be correct and efficient in all cases
- Optimization tradeoff: investment vs. payoff
 - "Better than naïve" is fairly easy
 - "Optimal" is impossible
 - Real world: somewhere in between
 - Better speedups with more static analysis
 - Usually worth the added compile time
- Also: linear IRs (e.g., ILOC) don't explicitly expose control flow
 - This makes analysis and optimization difficult
Aside: Verifying Returns in P3

• Is is tempting to try to verify that functions end with a return statement in P3, but this is not possible with a naive approach.
• Consider cases like this:

```python
def int foo(bool x)
{
    // other code here
    if (x) {
        return 5;
    } else {
        return 10;
    }
}
```

This is guaranteed to be safe (every path has a return statement) but requires non-trivial, non-local static analysis to verify (i.e., can't just check the last statement in the function).
Control-Flow Graphs

- **Basic blocks**
 - "Maximal-length sequence of branch-free code"
 - "Atomic" sequences (instructions that always execute together)

- **Control-flow graph** (CFG)
 - Nodes/vertices for basic blocks
 - Edges for control transfer
 - Branch/jump instructions (explicit) or fallthrough (implicit)
 - p is a predecessor of q if there is a path from p to q
 - p is an immediate predecessor if there is an edge directly from p to q
 - q is a successor of p if there is a path from p to q
 - q is an immediate successor if there is an edge directly from p to q
Control-Flow Graphs

- **Conversion: linear IR to CFG**
 - Find *leaders* (initial instruction of a basic block) and build blocks
 - Every call or jump target is a leader
 - Add edges between blocks based on jumps/branches and fallthrough
 - Complicated by indirect jumps (none in our ILOC!)

```
foo:
  loadAI [bp-4] => r1
  cbr r1 => l1, l2
l1:
  loadI 5 => r2
  jump l3
l2:
  loadI 10 => r2
l3:
  storeAI r2 => [bp-4]
```
Static CFG Analysis

• Single block analysis is easy, and trees are too
• General CFGs are harder
 – Which branch of a conditional will execute?
 – How many times will a loop execute?
• How do we handle this?
 – One method: iterative data-flow analysis
 – Simulate all possible paths through a region of code
 – “Meet-over-all-paths” conservative solution
 – Meet operator combines information across paths
In general, a **semilattice** is a set of values L, special values \top (top) and \bot (bottom), and a **meet operator** \wedge such that

- $a \geq b$ iff $a \wedge b = b$
- $a > b$ iff $a \geq b$ and $a \neq b$
- $a \wedge \top = a$ for all $a \in L$
- $a \wedge \bot = \bot$ for all $a \in L$

Partial ordering

- Monotonic

Figure 9.22 from Dragon book: semilattice of definitions using \cup (set union) as the meet operation
Constant propagation

- For **sparse simple constant propagation (SSCP)**, the lattice is very shallow
 - $c_i ^ \top = c_i$ for all c_i
 - $c_i ^ \bot = \bot$ for all c_i
 - $c_i ^ c_j = c_i$ if $c_i = c_j$
 - $c_i ^ c_j = \bot$ if $c_i \neq c_j$

- Basically: each SSA value is either unknown (\top), a known constant (c_i), or it is a variable (\bot)
 - Initialize to unknown (\top) for all SSA values
 - Interpret operations over lattice values (always lowering)
 - Propagate information until convergence
Constant propagation example

- **loadAI** [bp-4] => r1
- cbr r1 => l1, l2
- loadI 5 => r2
- jump l3
- storeAI r2 => [bp-4]
- loadI 10 => r2
- foo

Semilattice for Constant Propagation

- \(r_1: \top \)
- \(r_2: \top \)
- \(r_1: \bot \)
- \(r_2: 5 \)
- \(r_1: \bot \)
- \(r_2: \bot \)
- \(r_1: \bot \)
- \(r_2: 10 \)
Data-Flow Analysis

• Define properties of interest for basic blocks
 – Usually sets of blocks, variables, definitions, etc.

• Define a formula for how those properties change within a block
 – F(B) is based on F(A) where A is a predecessor or successor of B
 – This is basically the meet operator for a particular problem

• Specify initial information for all blocks
 – Entry/exit blocks usually have special initial values

• Run an iterative update algorithm to propagate changes
 – Keep running until the properties converge for all basic blocks

• Key concept: finite descending chain property
 – Properties must be monotonically increasing or decreasing
 – Otherwise, termination is not guaranteed
Data-Flow Analysis

• This kind of algorithm is called **fixed-point iteration**
 - It runs until it converges to a “fixed point”

• **Forward vs. backward** data-flow analysis
 - Forward: along graph edges (based on predecessors)
 - Backward: reverse of forward (based on successors)

• **Particular data-flow analyses:**
 - Constant propagation
 - Dominance
 - Liveness
 - Available expressions
 - Reaching definitions
 - Anticipable expressions
Review: Set Theory

\[A \cup B \]

\[A \cap B \]

\[A \]

\[\overline{A} \]

\[B \cap \overline{A} = B - A \]
Dominance

- Block A **dominates** block B if A is on every path from the entry to B
 - Block A **immediately** dominates block B if there are no blocks between them
 - Block B **postdominates** block A if B is on every path from A to an exit
 - Every block both dominates and postdominates itself

- Simple dataflow analysis formulation
 - $\text{preds}(b)$ is the set of blocks that are predecessors of block b
 - $\text{Dom}(b)$ is the set of blocks that dominate block b
 - intersection of Dom for all immediate predecessors
 - $\text{PostDom}(b)$ is the set of blocks that postdominate block b
 - (similar definition using $\text{succs}(b)$)

Initial conditions: $\text{Dom}(\text{entry}) = \{ \text{entry} \}$

\[
\forall b \neq \text{entry}, \quad \text{Dom}(b) = \{ \text{all blocks} \}
\]

Updates: $\text{Dom}(b) = \{ b \} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p)$
Dominance example

Initial conditions: \(\text{Dom}(\text{entry}) = \{\text{entry}\} \)
\[\forall b \neq \text{entry}, \quad \text{Dom}(b) = \{\text{all blocks}\} \]

Updates: \(\text{Dom}(b) = \{b\} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p) \)

\[
\begin{align*}
\text{Dom}(\text{foo}) &= \{\text{foo}\} \\
\text{Dom}(\text{l1}) &= \{\text{foo}, \text{l1}\} \\
\text{Dom}(\text{l2}) &= \{\text{foo}, \text{l2}\} \\
\text{Dom}(\text{l3}) &= \{\text{foo}, \text{l3}\}
\end{align*}
\]
Liveness

- Variable v is **live** at point p if there is a path from p to a use of v with no intervening assignment to v
 - Useful for finding uninitialized variables (live at function entry)
 - Useful for optimization (remove unused assignments)
 - Useful for register allocation (keep live vars in registers)
- Initial information: $UEVar$ and $VarKill$
 - $UEVar(B)$: variables read in B before any corresponding write in B
 - (“upwards exposed” variables)
 - $VarKill(B)$: variables that are written to (“killed”) in B
- Textbook notation note: $X \cap \overline{Y} = X - Y$

Initial conditions: $\forall \ b, \ LiveOut(b) = \emptyset$

Updates: $LiveOut(b) = \bigcup_{s \in succs(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s))$
Liveness example

\[\forall b, \text{LiveOut}(b) = \emptyset \]
\[\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s)) \]

(a) Code for the Basic Blocks

(b) Control-Flow Graph

(c) Initial Information

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
 & \(B_0 \) & \(B_1 \) & \(B_2 \) & \(B_3 \) & \(B_4 \) & \(B_5 \) & \(B_6 \) & \(B_7 \) & \(B_8 \) \\
\hline
\text{UEVAR} & \emptyset & \emptyset & \emptyset & \{a,b,c,d,i\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
\text{VARKILL} & \{i\} & \{a,c\} & \{b,c,d\} & \{y,z,i\} & \emptyset & \{a,d\} & \{d\} & \{b\} & \{c\} \\
\hline
\end{tabular}
Alternative definition

- Define LiveIn as well as LiveOut
 - Two formulas for each basic block
 - Makes things a bit simpler to reason about
 - Separates change within block from change between blocks

\[
\forall b, \quad \text{LiveIn}(b) = \emptyset, \quad \text{LiveOut}(b) = \emptyset
\]

\[
\text{LiveIn}(b) = \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b))
\]

\[
\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s)
\]
Liveness example

∀ b, LiveIn(b) = ∅, LiveOut(b) = ∅

LiveIn(b) = UEVar(b) ∪ (LiveOut(b) − VarKill(b))

LiveOut(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s)

LiveIn(foo) = {}
LiveOut(foo) = {}

LiveIn(l1) = {}
LiveOut(l1) = {r2}

LiveIn(l2) = {}
LiveOut(l2) = {r2}

LiveIn(l3) = {r2}
LiveOut(l3) = {}

∀ b, LiveIn(b) = ∅, LiveOut(b) = ∅
Block orderings

- Forwards dataflow analyses converge faster with reverse postorder processing of CFG blocks
 - Visit as many of a block’s predecessors as possible before visiting that block
 - Strict reversal of normal postorder traversal
 - Similar to concept of topological sorting on DAGs
 - NOT EQUIVALENT to preorder traversal!
 - Backwards analyses should use reverse postorder on reverse CFG

Depth-first search:
- A, B, D, B, A, C, A (left first)
- A, C, D, C, A, B, A (right first)

Valid preorderings:
- A, B, D, C (left first)
- A, C, D, B (right first)

Valid postorderings:
- D, B, C, A (left first)
- D, C, B, A (right first)

Valid reverse postorderings:
- A, C, B, D
- A, B, C, D
Summary

\[\text{Dom}(\text{entry}) = \{\text{entry}\} \]
\[\forall b \neq \text{entry}, \text{Dom}(b) = \{\text{all blocks}\} \]
\[\text{Dom}(b) = \{b\} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p) \]

\[\forall b, \text{LiveOut}(b) = \emptyset \]
\[\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s)) \]

\[\forall b, \text{LiveIn}(b) = \emptyset, \text{LiveOut}(b) = \emptyset \]
\[\text{LiveIn}(b) = \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b)) \]
\[\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s) \]