CS 432 Fall 2023

Mike Lam, Professor

Data-Flow Analysis

Compilers

Optimization

```
loadI 0 \Rightarrow r1
  int a;
                                                 storeAI r1 \Rightarrow [bp-4]
  a = 0;
                                              l1:
  while (a < 10) {
                                                 loadAI [bp-4] \Rightarrow r2
       a = a + 1;
                                                 loadI 10 => r3
                                                 cmp_LT r2, r3 \Rightarrow r4
                                                 cbr r4 => 12, 13
                                              12:
                                                 loadAI [bp-4] => r5
                                                 loadI 1 \Rightarrow r6
  loadI 0 \Rightarrow r1
                                                 add r5, r6 => r7
  loadI 10 => r2
                                                 storeAI r7 \Rightarrow [bp-4]
l1:
                                                jump l1
  cmp_LT r1, r2 \Rightarrow r4
                                              13:
  cbr r4 => 12, 13
12:
  addI r1, 1 \Rightarrow r1
  jump l1
                                                 loadI 10 => r1
13:
                                                 storeAI r1 \Rightarrow [bp-4]
  storeAI r1 \Rightarrow [bp-4]
```

Optimization is Hard

- **Problem**: it's hard to reason about all possible executions
 - Preconditions and inputs may differ
 - Optimizations should be correct and efficient in all cases
- Optimization tradeoff: investment vs. payoff
 - "Better than naïve" is fairly easy
 - "Optimal" is impossible
 - Real world: somewhere in between
 - Better speedups with more static analysis
 - Usually worth the added compile time
- Also: linear IRs (e.g., ILOC) don't explicitly expose control flow
 - This makes analysis and optimization difficult

Aside: Verifying Returns in P3

- Is is tempting to try to verify that functions end with a return statement in P3, but this is not possible with a naive approach
- Consider cases like this:

```
def int foo(bool x)
{
    // other code here

    if (x) {
       return 5;
    } else {
       return 10;
    }
}
```

This is **guaranteed** to be **safe** (every path has a return statement) but requires nontrivial, non-local static analysis to verify (i.e., can't just check the last statement in the function)

Control-Flow Graphs

Basic blocks

- "Maximal-length sequence of branch-free code"
- "Atomic" sequences (instructions that always execute together)

Control-flow graph (CFG)

- Nodes/vertices for basic blocks
- Edges for control transfer
 - Branch/jump instructions (explicit) or fallthrough (implicit)
 - p is a predecessor of q if there is a path from p to q
 - p is an immediate predecessor if there is an edge directly from p to q
 - q is a successor of p if there is a path from p to q
 - q is an immediate successor if there is an edge directly from p to q

Control-Flow Graphs

- Conversion: linear IR to CFG
 - Find leaders (initial instruction of a basic block) and build blocks
 - Every call or jump target is a leader
 - Add edges between blocks based on jumps/branches and fallthrough
 - Complicated by indirect jumps (none in our ILOC!)

```
foo
                                                         loadAI [bp-4] => r1
foo:
                                                         cbr r1 => l1, l2
  loadAI [bp-4] => r1
  cbr r1 => l1, l2
                                               11
l1:
                                                                                         12
  loadI 5 => r2
                                                loadI 5 \Rightarrow r2
                                                                          loadI 10 => r2
  jump 13
                                                jump 13
12:
  loadI 10 \Rightarrow r2
                                                        13
13:
  storeAI r2 \Rightarrow [bp-4]
                                                         storeAI r2 \Rightarrow [bp-4]
```

Static CFG Analysis

- Single block analysis is easy, and trees are too
- General CFGs are harder
 - Which branch of a conditional will execute?
 - How many times will a loop execute?
- How do we handle this?
 - One method: iterative data-flow analysis
 - Simulate all possible paths through a region of code
 - "Meet-over-all-paths" conservative solution
 - Meet operator combines information across paths

Semilattices

- In general, a semilattice is a set of values L, special values \top (top) and \bot (bottom), and a meet operator $^{\land}$ such that
 - $-a \ge b$ iff $a \land b = b$
 - a > b iff $a \ge b$ and $a \ne b$
 - $-a^T = a$ for all $a \in L$
 - $a \wedge \bot = \bot$ for all $a \in L$
- Partial ordering
 - Monotonic

Figure 9.22 from Dragon book: semilattice of definitions using U (set union) as the meet operation

Constant propagation

 For sparse simple constant propagation (SSCP), the lattice is very shallow

$$- c_i \wedge \top = c_i$$
 for all c_i

$$- c_i \wedge \bot = \bot \text{ for all } c_i$$

$$- c_i \wedge c_j = c_i \text{ if } c_i = c_j$$

$$- c_i \land c_j = \bot if c_i \neq c_j$$

Semilattice for Constant Propagation

- Basically: each SSA value is either unknown (\top), a known constant (c_i), or it is a variable (\bot)
 - Initialize to unknown (\top) for all SSA values
 - Interpret operations over lattice values (always lowering)
 - Propagate information until convergence

Constant propagation example

Data-Flow Analysis

- Define properties of interest for basic blocks
 - Usually sets of blocks, variables, definitions, etc.
- Define a formula for how those properties change within a block
 - F(B) is based on F(A) where A is a predecessor or successor of B
 - This is basically the *meet* operator for a particular problem
- Specify initial information for all blocks
 - Entry/exit blocks usually have special initial values
- Run an iterative update algorithm to propagate changes
 - Keep running until the properties converge for all basic blocks
- Key concept: finite descending chain property
 - Properties must be monotonically increasing or decreasing
 - Otherwise, termination is not guaranteed

Data-Flow Analysis

- This kind of algorithm is called fixed-point iteration
 - It runs until it converges to a "fixed point"
- Forward vs. backward data-flow analysis
 - Forward: along graph edges (based on predecessors)
 - Backward: reverse of forward (based on successors)
- Particular data-flow analyses:
 - Constant propagation
 - Dominance
 - Liveness
 - Available expressions
 - Reaching definitions
 - Anticipable expressions

Review: Set Theory

$$B \cap \overline{A} = B - A$$

Dominance

- Block A dominates block B if A is on every path from the entry to B
 - Block A immediately dominates block B if there are no blocks between them
 - Block B postdominates block A if B is on every path from A to an exit
 - Every block both dominates and postdominates itself
- Simple dataflow analysis formulation
 - preds(b) is the set of blocks that are predecessors of block b
 - *Dom*(b) is the set of blocks that dominate block b
 - intersection of *Dom* for all immediate predecessors
 - PostDom(b) is the set of blocks that postdominate block b
 - (similar definition using succs(b))

Initial conditions:
$$Dom(entry) = \{entry\}$$

 $\forall b \neq entry, Dom(b) = \{all blocks\}$

Updates:
$$Dom(b) = \{b\} \cup \bigcap_{p \in preds(b)} Dom(p)$$

Dominance example

```
Initial conditions: Dom(entry) = \{entry\}
\forall b \neq entry, Dom(b) = \{all \ blocks\}
Updates: Dom(b) = \{b\} \cup \bigcap_{p \in preds(b)} Dom(p)
```

```
Dom(foo) = {foo}
Dom(l1) = {foo, l1}
Dom(l2) = {foo, l2}
Dom(l3) = {foo, l3}
```


Liveness

- Variable v is live at point p if there is a path from p to a use of v with no intervening assignment to v
 - Useful for finding uninitialized variables (live at function entry)
 - Useful for optimization (remove unused assignments)
 - Useful for register allocation (keep live vars in registers)
- Initial information: UEVar and VarKill
 - UEVar(B): variables read in B before any corresponding write in B
 - ("upwards exposed" variables)
 - VarKill(B): variables that are written to ("killed") in B
- Textbook notation note: $X \cap \overline{Y} = X Y$

Initial conditions: $\forall b$, LiveOut(b) = \emptyset

$$Updates: \ LiveOut(b) = \bigcup_{s \in succs(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s))$$

Liveness example

(c) Initial Information

$$\forall b$$
, $LiveOut(b) = \emptyset$ $LiveOut(b) = \bigcup_{s \in succs(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s))$

Alternative definition

- Define LiveIn as well as LiveOut
 - Two formulas for each basic block
 - Makes things a bit simpler to reason about
 - Separates change within block from change between blocks

$$\forall b$$
, $LiveIn(b) = \emptyset$, $LiveOut(b) = \emptyset$

$$LiveIn(b) = UEVar(b) \cup (LiveOut(b) - VarKill(b))$$

$$LiveOut(b) = \bigcup_{s \in succs(b)} LiveIn(s)$$

Liveness example

```
\forall b, LiveIn(b) = \emptyset, LiveOut(b) = \emptyset
```

$$LiveIn(b) = UEVar(b) \cup (LiveOut(b) - VarKill(b))$$

$$LiveOut(b) = \bigcup_{s \in succs(b)} LiveIn(s)$$

```
LiveIn (foo) = {}
LiveOut(foo) = {}

LiveIn (l1) = {}

LiveOut(l1) = {r2}

LiveIn (l2) = {}

LiveOut(l2) = {r2}

LiveIn (l3) = {r2}

LiveOut(l3) = {}
```


Block orderings

- Forwards dataflow analyses converge faster with reverse postorder processing of CFG blocks
 - Visit as many of a block's predecessors as possible before visiting that block
 - Strict reversal of normal postorder traversal
 - Similar to concept of topological sorting on DAGs
 - NOT EQUIVALENT to preorder traversal!
 - Backwards analyses should use reverse postorder on reverse CFG

Depth-first search:

A, **B**, **D**, B, A, **C**, A (left first) **D**, **B**, **C**, **A** (left first) **A, C, D,** C, A, **B**, A (right first)

Valid *preorderings*:

A, B, D, C (left first) A, C, D, B (right first) Valid postorderings:

D, C, B, A (right first)

Valid reverse postorderings:

A, C, B, D A, B, C, D

Summary

$$Dom(entry) = \{entry\}$$
 $\forall b \neq entry, Dom(b) = \{all blocks\}$
 $Dom(b) = \{b\} \cup \bigcap_{p \in preds(b)} Dom(p)$

 $s \in succs(b)$

Dominance

$$\forall b , \ LiveOut(b) = \emptyset$$

$$LiveOut(b) = \bigcup_{s \in succs(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s))$$
 Liveness (EAC version)

$$\forall b$$
, $LiveIn(b) = \emptyset$, $LiveOut(b) = \emptyset$
 $LiveIn(b) = UEVar(b) \cup (LiveOut(b) - VarKill(b))$ (Dragon version)
 $LiveOut(b) = \bigcup LiveIn(s)$