CS 432

Fall 2023

Mike Lam, Professor

urban

recursion

See recursion.

Top-Down (LL) Parsing

Compilation

Review

- Recognize regular languages with finite automata
- Described by regular expressions
- Rule-based transitions, no memory required
- Recognize context-free languages with pushdown automata
- Described by context-free grammars
- Rule-based transitions, MEMORY REQUIRED
- Add a stack!

Segue

KEY OBSERVATION: Allowing the translator to use memory to track parse state information enables a wider range of automated machine translation.

Chomsky Hierarchy of Languages

Grammar	Languages	Automaton	Production rules (constraints)
Type-0	Recursively enumerable	Turing machine	$\alpha \rightarrow \beta$ (no restrictions)
Type-1	Context-sensitive	Linear-bounded non-deterministic Turing machine	$\alpha A \beta \rightarrow \alpha \gamma \beta$
Type-2	Context-free	Non-deterministic pushdown automaton	$A \rightarrow \gamma$
Type-3	Regular	Finite state automaton	$A \rightarrow a$
and			

Parsing Approaches

- Top-down: begin with start symbol (root of parse tree), and gradually expand non-terminals
- Stack contains non-terminals that are still being expanded
- Bottom-up: begin with terminals (leaves of parse tree), and gradually connect using non-terminals
- Stack contains roots of subtrees that still need to be connected

Top-Down Parsing

```
root = createNode(S)
focus = root
push(null)
token = nextToken()
loop:
    if (focus is non-terminal):
        B = chooseRuleAndExpand(focus)
        for each b in B.reverse():
            focus.addChild(createNode(b))
            push(b)
        focus = pop()
    else if (token == focus):
        token = nextToken()
        focus = pop()
    else if (token == EOF and focus == null):
        return root
    else:
        exit(ERROR)
```

$$
\mathrm{A} \rightarrow \mathrm{~V}=\mathrm{E}
$$

$$
V \rightarrow a|b| c
$$

$$
E \rightarrow E+E
$$

$$
1 \quad V
$$

Recursive Descent Parsing

- Idea: use the system stack rather than an explicit stack
- One function for each non-terminal
- Encode productions with function calls and token checks
- Use recursion to track current "state" of the parse
- Easiest kind of parser to write manually

```
A -> 'f' C 'then' S
    | 'goto' L
class A {
    enum Type
        { IFTHEN, GOTO }
        Type type
        C cond
        S stmt
        L lbl
}
```

```
parseA(tokens):
```

parseA(tokens):
node = new A()
node = new A()
next = tokens.next()
next = tokens.next()
if next == "if":
if next == "if":
node.type = IFTHEN
node.type = IFTHEN
node.cond = parseC()
node.cond = parseC()
matchToken("then")
matchToken("then")
node.stmt = parseS()
node.stmt = parseS()
else if next == "goto"
else if next == "goto"
node.type = GOTO
node.type = GOTO
node.lbl = parseL()
node.lbl = parseL()
else
else
error ("expected 'if' or 'goto'")
error ("expected 'if' or 'goto'")
return node

```
    return node
```


Top-Down Parsing

- Main issue: choosing which rule to use
- In previous example, we just looked for 'if' or 'goto'
- With full lookahead, it would be relatively easy
- This would be very inefficient
- Can we do it with a single lookahead?
- That would be much faster
- Must be careful to avoid backtracking

LL(1) Parsing

- $\underline{L L}(1)$ grammars and parsers
- Left-to-right scan of the input string
- Leftmost derivation
- 1 symbol of lookahead
- Highly restricted form of context-free grammar
- No left recursion
- No backtracking

Context-Free Hierarchy

- We can convert many grammars to be LL(1)
- Must remove left recursion
- Must remove common prefixes (i.e., left factoring)
- Easy (relatively) to hand-write a parser
- Practical solution to real-world translation problems

Grammar with left recursion

$$
\begin{array}{r}
A \rightarrow \alpha \\
\quad \beta_{1} \\
\\
\end{array} \alpha \beta_{2}
$$

Grammar with common prefixes

Eliminating Left Recursion

- Left recursion: $A \rightarrow A \alpha \mid \beta$
- Often a result of left associativity (e.g., expression grammar)
- Leads to infinite looping/recursion in a top-down parser
- To fix, unroll the recursion into a new non-terminal
- Practical note (P2): A and A' can be a single function in your code
- Parse one β, then continue parsing α 's until there are no more
- Keep adding the previous parse tree as a left subnode of the new parse tree

$$
\begin{aligned}
& A \rightarrow A \alpha \\
& \mid \beta
\end{aligned} \quad \square \begin{aligned}
& A \rightarrow \beta A^{\prime} \\
& A^{\prime} \rightarrow \alpha A^{\prime} \\
& \mid \varepsilon \varepsilon
\end{aligned}
$$

Left Factoring

- Common prefix: $A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2} \ldots$
- Leads to ambiguous rule choice in a top-down parser
- One lookahead (α) is not enough to pick a rule; backtracking is required
- To fix, left factor the choices into a new non-terminal
- Practical note (P2): A and A' can be a single function in your code
- Parse and save data about α in temporary variables until you have enough information to choose

$$
\begin{gathered}
A \rightarrow \beta_{1} \\
1 \\
\alpha \beta_{2} \\
\ldots
\end{gathered} \quad \square \begin{aligned}
& A \rightarrow \alpha A^{\prime} \\
& A^{\prime} \rightarrow \beta_{1} \\
& \mid \beta_{2}
\end{aligned}
$$

Examples

- Eliminating left recursion:

$$
E \underset{\mid}{\mathrm{E}} \mathrm{E}+\mathrm{T}
$$

$$
\mathrm{E} \rightarrow \mathrm{~T}^{\prime}
$$

- Left factoring:

$$
\begin{aligned}
& C \rightarrow \text { if E B else B ff } \\
& \text { | if E B ai } \\
& C \rightarrow \text { if } E B C^{\prime} \\
& C^{\prime} \rightarrow \text { else B ai } \\
& \text { | ai }
\end{aligned}
$$

LL(1) Parsing

- LL(1) parsers can also be auto-generated
- Similar to auto-generated lexers
- Tables created by a parser generator using FIRST and FOLLOW helper sets
- These sets are also useful when building hand-written recursive descent parsers
- And (as we'll see next week), when building SLR parsers

LL(1) Parsing

- FIRST(α)
- Set of terminals (or ε) that can appear at the start of a sentence derived from α (a terminal or non-terminal)
- FOLLOW(A) set
- Set of terminals (or \$) that can occur immediately after nonterminal A in a sentential form
- FIRST $^{+}(\mathrm{A} \rightarrow \beta)$
- If ε is not in $\operatorname{FIRST}(\beta)$
- FIRST $^{+}(\mathrm{A})=\operatorname{FIRST}(\beta)$

Useful for choosing which rule to apply when expanding a non-terminal

- Otherwise
- $\operatorname{FIRST}^{+}(\mathrm{A})=\operatorname{FIRST}(\beta) \cup \operatorname{FOLLOW}(\mathrm{A})$

Calculating FIRST(α)

-Rule 1: α is a terminal a
$-\operatorname{FIRST}(\mathrm{a})=\{\mathbf{a}\}$

- Rule 2: α is a non-terminal X
- Examine all productions $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$
- add FIRST $\left(Y_{1}\right)$ if not $Y_{1} \rightarrow{ }^{*} \varepsilon$
- add FIRST $\left(Y_{i}\right)$ if $Y_{1} \ldots Y_{j} \rightarrow{ }^{*} \varepsilon$, where $j=i-1$ (i.e., skip disappearing symbols)
- $\operatorname{FIRST}(X)$ is union of all of the above
- Rule 3: α is a non-terminal X and $X \rightarrow \varepsilon$
- FIRST(X) includes ε

Calculating FOLLOW(B)

- Rule 1: FOLLOW(S) includes EOF / \$
- Where S is the start symbol
- Rule 2: for every production $A \rightarrow \alpha B \beta$
- FOLLOW(B) includes everything in FIRST(β) except ε
- Rule 3: if $A \rightarrow \alpha B$ or $(A \rightarrow \alpha B \beta$ and $\operatorname{FIRST}(\beta)$ contains $\varepsilon)$
- FOLLOW(B) includes everything in FOLLOW(A)

Example

- FIRST and FOLLOW sets:

$$
\begin{aligned}
& A \rightarrow X A X \\
& \text { | y B y } \\
& B \rightarrow C \text { m } \\
& \text { I C } \\
& C \rightarrow t
\end{aligned}
$$

$\operatorname{FIRST}(x)=\{x\}$
$\operatorname{FIRST}(y)=\{y\}$
$\operatorname{FIRST}(A)=\{x, y\}$
$\operatorname{FIRST}(\mathrm{B})=\{\mathrm{t}\}$
$\operatorname{FIRST}(\mathrm{C})=\{\mathrm{t}\}$
$\operatorname{FIRST}^{+}(\mathrm{A} \rightarrow \mathrm{xAx})=\{\mathrm{x}\}$
$\operatorname{FIRST}^{+}(\mathrm{A} \rightarrow \mathrm{y} B \mathrm{y})=\{\mathrm{y}\}$
(disjoint: this is ok)
$\operatorname{FIRST}^{+}(\mathrm{B} \rightarrow \mathrm{C} m)=\{\mathrm{t}\}$
$\operatorname{FIRST}^{+}(\mathrm{B} \rightarrow \mathrm{C})=\{\mathrm{t}\}$
(not disjoint: requires backtracking!)

FOLLOW(A) $=\{x, \$\}$
FOLLOW $(\mathrm{B})=\{\mathrm{y}\}$
FOLLOW $(\mathrm{C})=\{\mathrm{y}, \mathrm{m}\}$

Aside: abstract syntax trees

$$
\begin{array}{ll}
\text { Grammar: } \quad & \mathrm{A} \rightarrow \mathrm{~V}=\mathrm{E} ; \\
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{V} \\
& \mid \mathrm{V} \\
& \mathrm{~V} \rightarrow \mathrm{a}|\mathrm{~b}| \mathrm{c}
\end{array}
$$

Parse tree:

Abstract syntax tree:

In P2, you will build an AST, not a parse tree!

Aside: Parser combinators

- A parser combinator is a higher-order function for parsing
- Takes several parsers as inputs, returns new parser as output
- Allows parser code to be very close to grammar
- (Relatively) recent development: ‘90s and ‘00s
- Example: Parsec in Haskell

```
whileStmt :: Parser Stmt
whileStmt =
    do keyword "while"
        cond <- expression
        keyword "do"
        stmt <- statement
        return (While cond stmt)
```

```
assignStmt :: Parser Stmt
assignStmt =
    do var <- identifier
        operator ":="
        expr <- expression
        return (Assign var expr)
```

