CS 432 Fall 2023

Mike Lam, Professor

[audience looks around] "What just happened?" "There must be some context we're missing."

Context-free Grammars

Compilation

Overview

- General programming language topics (e.g., CS 430)
- Syntax (what a program looks like)
- Semantics (what a program means)
- Implementation (how a program executes)

Syntax

- Textbook: "the form of [a language's] expressions, statements, and program units."
- In other words, the form or structure of the code
- Goals of syntax analysis:
- Checking for program validity or correctness
- Encode semantics (meaning of program)
- Facilitate translation (compiler) or execution (interpreter)
- We've already seen the first step (lexing/scanning)

Syntax Analysis

- Problem: tokens have no structure
- No inherent relationship between each other
- Need to make hierarchy of tokens explicit
- Closer to the semantics of the language

```
total = sum(vals) / n
total identifier
= equals_op
sum identifier
( left_paren
vals identifier
) right_paren
/ divide_op
n identifier
```


Languages

Chomsky Hierarchy of Languages

NOTE: Greek letters (α, β, γ) indicate arbitrary strings of terminals and/or non-terminals

- Regular languages are not sufficient to describe programming languages
- Core issue: finite DFAs can't "count" - no way to express $\mathrm{a}^{m} \mathrm{~b}^{n}$ where $n=\mathrm{f}(m)$
- Consider the language of all matched parentheses ()$\left.^{n}\right)^{n}$
- How can we solve this to make it feasible to write a compiler?

Add memory! (and move up the language hierarchy)

Languages

- Chomsky-Schützenberger representation theorem
- A language L over the alphabet Σ is context-free if and only if there exists
- a matched alphabet TU $\bar{\top}$
- a regular language R over $\mathrm{T} \cup \bar{\top}$
- a mapping $h: T \cup \bar{T} \rightarrow \Sigma^{*}$
- such that $L=h\left(D_{T} \cap R\right)$
- where $D_{T}=\{w \in T \cup \bar{T} \mid w$ is a correctly-nested sequence of parenthesis $\}$
https://en.wikipedia.org/wiki/Chomsky-Schützenberger_representation_theorem

Basically, all context-free languages can be expressed as the combination of two simpler languages: one being regular and one being composed of correctly-nested sequences of parentheses.

KEY OBSERVATION: Context-free grammars describe a wider range of languages than regular expressions, with the primary new feature being the ability to count

Languages

- Context-free languages
- More expressive than regular languages
- Expressive enough for "real" programming languages
- Described by context-free grammars
- Recursive description of the language's form
- Encodes hierarchy and structure of language tokens
- Usually written in Backus-Naur Form
- Recognized by pushdown automata
- Finite automata + stack
- Two major approaches: top-down and bottom-up
- Produces a tree-based intermediate representation of a program
- Provide ways to control ambiguity, associativity, and precedence in a language

Context-Free Grammars

- A context-free grammar is a 4-tuple (T, NT, S, P)
- T: set of terminal symbols (tokens)
- NT: set of nonterminal symbols
- S: start symbol (S \in NT) - usually the first non-terminal listed
- P: set of productions or rules:
- NT $\rightarrow(T \quad U N T)$ *

Example:

$$
\begin{aligned}
& A \rightarrow X A X \\
& A \rightarrow Y \\
& \mathbf{T}=\{x, y\} \\
& N T=\{A\} \\
& S=A \\
& \mathbf{P}=\{A \rightarrow X A x, A \rightarrow y\}
\end{aligned}
$$

Strings in language:

$$
\begin{aligned}
& y \\
& \text { xyx } \\
& \text { xxyxx } \\
& \text { xxxyxxx } \\
& \text { (etc.) }
\end{aligned}
$$

Context-Free Grammars

- Non-terminals vs. terminals
- Terminals are single tokens, non-terminals are aggregations
- One special non-terminal: the start symbol
- Production rules
- Meta-symbol operator " \rightarrow " with left- and right-hand sides
- Left-hand side: single non-terminal
- Right-hand side: sequence of terminals and/or non-terminals
- LHS can be replaced by the RHS (colloquially: "is composed of")
- RHS can be empty (or " ε "), meaning it can be composed of nothing
- Sentence: a sequence of terminals

Context-Free Grammars

- Derivation: a series of grammar-permitted transformations leading to a sentence
- Begin with the grammar's start symbol (a non-terminal)
- Each transformation applies exactly one rule
- Expand one non-terminal to a string of terminals and/or non-terminals
- Each intermediate string of symbols is a sentential form
- Leftmost vs. rightmost derivations
- Which non-terminal do you expand first?
- Parse tree represents a derivation in tree form (the sentence is the sequence of all leaf nodes)
- Built from the top down during derivation
- Final parse tree is called complete parse tree
- For a compiler: represents a program, executed from the bottom up

Context-Free Grammars

- Backus-Naur Form: list of context-free grammar rules
- Usually beginning with start symbol
- Convention: non-terminals start with upper-case letters
- Combine rules using "|" meta-symbol operator:

$$
\left.\begin{array}{lll}
E \rightarrow E & E & E \\
E \rightarrow V & E & E
\end{array} \quad E \rightarrow E+E \right\rvert\, V
$$

- Several formatting variants:

$$
\begin{aligned}
& \text { <Assign> ::= <Var> = <Expr> } \\
& \text { <Var> ::= a | b | c } \\
& \text { <Expr> ::= <Expr> + <Expr> } \\
& A \rightarrow V=E \\
& V \rightarrow a|b| c \\
& E \rightarrow \underset{ }{\rightarrow} \quad \mathrm{E}+\mathrm{E}
\end{aligned}
$$

Example

- Identify parts of the following grammar:
- Non-terminals
- Terminals
- Meta-symbols

$$
\begin{aligned}
& A \rightarrow V=E \\
& V \rightarrow a|b| c \\
& E \rightarrow E+E \\
& \\
& \overrightarrow{\mid} V
\end{aligned}
$$

Example

- Identify parts of the following grammar:
- Non-terminals
- Terminals
- Meta-symbols

$$
\begin{aligned}
& A \rightarrow V=E \\
& V \rightarrow a|b| c \\
& E \rightarrow E+E \\
& \\
& \overrightarrow{\mid} V
\end{aligned}
$$

Example

- Show the leftmost derivation and parse tree of the sentence "a = b + c" using this grammar:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~V}=\mathrm{E} \\
& V \rightarrow \mathrm{a}|\mathrm{~b}| \mathrm{c} \\
& E \rightarrow E+E \\
& \text { I V } \\
& \text { A } \\
& V=E \\
& \text { a }=E \\
& a=E+E \\
& a=V+E \\
& a=b+E \\
& a=b+V \\
& a=b+c
\end{aligned}
$$

Example

- Let's revisit the "matched parentheses" problem
- Cannot write a regular expression for $\left({ }^{n}\right)^{n}$
- How about a context-free grammar?
- First attempt:

$$
\begin{aligned}
& S \rightarrow \frac{1}{\varepsilon_{V}} \underset{\text { empy string! }}{ },
\end{aligned}
$$

Use underlining to indicate literal terminals when ambiguous

- Second attempt:

$$
\underset{S \rightarrow}{S \rightarrow} \underset{\varepsilon}{S} S L S
$$

What is wrong with this?

$$
\underset{S \rightarrow}{S \rightarrow S} \underset{S}{S}(S) S
$$

Example

What is wrong with this grammar? (Hint: try deriving "())")

$$
\begin{aligned}
& S \rightarrow S \perp S \perp S \\
& S \rightarrow \varepsilon
\end{aligned}
$$

Ambiguous Grammars

- An ambiguous grammar allows multiple derivations (and therefore parse trees) for the same sentence
- The syntax may be similar, but there is a difference semantically!
- Example: if/then/else construct
- It is important to be precise!
- Often can be eliminated by rewriting the grammar
- Usually by making one or more rules more restrictive

$A \rightarrow A+A$	$A \rightarrow B$	$A \rightarrow$ ifthen A else A
A * A	$B \rightarrow X$	\| ifthen A
X	$C \rightarrow X$	\| stmt
Ambiguous ssociativity/Precedence)	Ambiguous (Ad-hoc)	Ambiguous ("Dangling Else" Problem)

Operator Associativity

- Does $x+y+z=(x+y)+z$ or $x+(y+z)$?
- Former is left-associative
- Latter is right-associative
- Closely related to recursion
- Left-hand recursion \rightarrow left associativity
- Right-hand recursion \rightarrow right associativity
- Can be enforced explicitly for binary operators in a grammar
- Different non-terminals on left- and right-hand sides of the operator
- Sometimes just noted with annotations

Ambiguous

Left Associative

$$
A \underset{\mid}{\rightarrow} X+A
$$

Right Associative

Operator Precedence

- Precedence determines the relative priority of operators
- Does $x+y^{*} z=(x+y)^{\star} z$ or $x+(y * z)$?
- Former: "+" has higher precedence
- Latter: "*" has higher precedence
- Sometimes enforced explicitly in a grammar
- One non-terminal for each level of precedence
- Each level contains references to the next level
- Sometimes just noted with annotations
- Same approach for unary and binary operators
$A \rightarrow A+B$
\| B
$B \rightarrow B$ * C
| C
$C \rightarrow D$!
- For binary operators: left or right associativity?
- For unary operators: prefix or postfix? (! D vs. D !)
- For unary operators: is repetition allowed? (C ! vs. D !)

Precedence

+ (lowest)
* (middle)
! (highest)

Grammar Examples

$$
\begin{gathered}
A \underset{A}{\rightarrow} \mathrm{~A} X \\
\text { Left Recursive }
\end{gathered}
$$

Left Associative

Ambiguous (Associativity/Precedence)

Right Recursive

$$
A \underset{\mid x}{\rightarrow}+A
$$

Right Associative

Ambiguous (Ad-hoc)

Associativity/Precedence

+ (lowest, binary, left-associative)
* (middle, binary, right-associative)
! (highest, unary, postfix, non-repeatable)

Ambiguous
("Dangling Else" Problem)

