Finite Automata Conversions and Lexing
Key result: all of the following have the same expressive power (i.e., they all describe regular languages):
- Regular expressions (REs)
- Non-deterministic finite automata (NFAs)
- Deterministic finite automata (DFAs)

Proof by construction
- An algorithm exists to convert any RE to an NFA
- An algorithm exists to convert any NFA to a DFA
- An algorithm exists to convert any DFA to an RE
- For every regular language, there exists a minimal DFA
 - Has the fewest number of states of all DFAs equivalent to RE
Finite Automata

- Finite automata transitions:

 - Thompson's construction
 - Kleene's construction
 - Hopcroft's algorithm (minimize)
 - Subset construction
 - Brzozowski's algorithm (direct to minimal DFA)
 - Lexer generators

(dashed lines indicate transitions to a minimized DFA)
Finite Automata Conversions

- RE to NFA: Thompson's construction
 - Core insight: inductively build up NFA using “templates”
 - Core concept: use null transitions to build NFA quickly

- NFA to DFA: Subset construction
 - Core insight: DFA nodes represent subsets of NFA nodes
 - Core concept: use null closure to calculate subsets

- DFA minimization: Hopcroft’s algorithm
 - Core insight: create partitions, then keep splitting

- DFA to RE: Kleene's construction
 - Core insight: repeatedly eliminate states by combining regexes
Thompson's Construction

• Basic idea: create NFA inductively, bottom-up
 – Base case:
 • Start with individual alphabet symbols (see below)
 – Inductive case:
 • Combine by adding new states and null/epsilon transitions
 • Templates for the three basic operations
 – Invariant:
 • The NFA always has exactly one start state and one accepting state
Thompson's: Concatenation

A

B

q_A --- f_A --- q_B --- f_B
Thompson's: Concatenation
Thompson's: Union

A

\[q_A \rightarrow f_A \]

B

\[q_B \rightarrow f_B \]
Thompson's: Union

\[
\begin{align*}
A &\lor B \\
\text{S0} &\rightarrow q_A &\rightarrow f_A &\rightarrow \text{S1} \\
\text{S0} &\rightarrow q_B &\rightarrow f_B &\rightarrow \text{S1} \\
\end{align*}
\]
Thompson's: Closure
Thompson's: Closure
Thompson's Construction

Base case

Concatenation

Union

Closure
Basic idea: create DFA incrementally
- Each DFA state represents a subset of NFA states
- Use **null closure** operation to “collapse” null/epsilon transitions
- Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go “for free?”
 - Formally: ε-closure$(s) = \{s\} \cup \{ t \in S \mid (s,\varepsilon \rightarrow t) \in \delta \}$
- Simulates running all possible paths through the NFA

Null closure of $A = \{ A \}$
Null closure of $B = \{ B, D \}$
Null closure of $C =$
Null closure of $D =$
Subset construction

- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to “collapse” null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go “for free?”
 - Formally: ε-closure(s) = $\{s\} \cup \{ t \in S \mid (s, \varepsilon \rightarrow t) \in \delta \}$
 - Simulates running all possible paths through the NFA

Null closure of A = \{A\}
Null closure of B = \{B, D\}
Null closure of C = \{C, D\}
Null closure of D = \{D\}
Subset construction

- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to “collapse” null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go “for free?”
 - Formally: ε-closure(s) = $\{s\} \cup \{ t \in S \mid (s,\varepsilon \rightarrow t) \in \delta \}$
 - Simulates running all possible paths through the NFA

Null closure of A = { A }
Null closure of B = { B, D }
Null closure of C = { C, D }
Null closure of D = { D }
SubsettingConstruction(S, Σ, s₀, S_A, δ):

\[t_0 := \varepsilon\text{-closure}(s_0) \]

\[S' := \{ t_0 \} \quad S'_A := \emptyset \quad W := \{ t_0 \} \]

while \(W \neq \emptyset \):

choose \(u \) in \(W \) and remove it from \(W \)

for each \(c \) in \(\Sigma \):

\[t := \varepsilon\text{-closure}(\delta(u,c)) \]

\[\delta'(u,c) = t \]

if \(t \) is not in \(S' \) then

add \(t \) to \(S' \) and \(W \)

add \(t \) to \(S'_A \) if any state in \(t \) is also in \(S_A \)

return \((S', \Sigma, t_0, S'_A, \delta')\)
Subset Example
Subset Example
Subset Example
Subset Example

\[\{A, E\} \]

\[\{B, D, E\} \]

\[\{C, D\} \]

\[\{E\} \]
• Subset construction is a **fixed-point** algorithm
 - Textbook: “Iterated application of a monotone function”
 - Basically: A loop that is mathematically guaranteed to terminate at some point
 - When it terminates, some desirable property holds
 • In the case of **subset construction**: the NFA has been converted to a DFA
 • In the case of **DFA minimization** (up next): the DFA has the smallest number of states possible
Hopcroft’s DFA Minimization

- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with differing behaviors
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn’t
- When done, each partition becomes a single state
Hopcroft’s DFA Minimization

- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with **differing behaviors**
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn’t
- When done, each partition becomes a single state
Kleene's Construction

• Replace edge labels with REs
 - "a" → "a" and "a,b" → "a|b"

• Eliminate states by combining REs
 - See pattern below; apply pairwise around each state to be eliminated
 - Repeat until only one or two states remain

• Build final RE
 - One state with "A" self-loop → "A*"
 - Two states: see pattern below

Eliminating states:

Combining final two states:
Brzozowski’s Algorithm

• Direct NFA \rightarrow minimal DFA conversion
• Sub-procedures:
 - $\text{Reverse}(n)$: invert all transitions in NFA n, adding a new start state connected to all old final states
 - $\text{Subset}(n)$: apply subset construction to NFA n
 - $\text{Reach}(n)$: remove any part of NFA n unreachable from start state
• Apply them all in order two times to get minimal DFA
 - First time eliminates duplicate suffixes
 - Second time eliminates duplicate prefixes
 - $\text{MinDFA}(n) = \text{Reach}(\text{Subset}(\text{Reverse}(\text{Reach}(\text{Subset}(\text{Reverse}(n))))))$
 - Potentially easier to code than Hopcroft’s algorithm
Brzozowski’s Algorithm

- \(\text{MinDFA}(n) = \text{Reach}(\text{Subset}(\text{Reverse}(\text{Reach}(\text{Subset}(\text{Reverse}(n)))))) \)

Example from EAC (p.76)

![Diagram](https://via.placeholder.com/150)

FIGURE 2.19 Minimizing a DFA with Brzozowski’s Algorithm.
DFAs
- S: set of states
- Σ: alphabet (set of characters)
- δ: transition function: $(S, \Sigma) \rightarrow S$
- s_0: start state
- S_A: accepting/final states

accept():

```plaintext
s := s_0

for each input c:
    s := $\delta(s,c)$

return $s \in S_A$
```

NFAs
- δ may return a set of states
- δ may contain ϵ-transitions
- δ may contain transitions to multiple states on a symbol

accept():

```plaintext
T := $\epsilon$-closure($s_0$)

for each input $c$:
    N := $\{\}$
    for each $s$ in $T$:
        N := $N \cup \epsilon$-closure($\delta(s,c)$)
    T := N

return $|T \cap S_A| > 0$
```
Summary and Review

● RE to NFA: Thompson's construction
 - Core insight: **inductively** build up NFA using “templates”
 - Core concept: use **null transitions** to build NFA quickly

● NFA to DFA: **Subset construction**
 - Core insight: DFA nodes represent **subsets** of NFA nodes
 - Core concept: use **null closure** to calculate subsets

● DFA minimization: Hopcroft’s algorithm
 - Core insight: create **partitions**, then keep splitting

● DFA to RE: Kleene's construction
 - Core insight: repeatedly eliminate states by **combining** regexes
NFA/DFA complexity

- What are the time and space requirements to...
 - Build an NFA?
 - Run an NFA?
 - Build a DFA?
 - Run a DFA?

\[
\begin{align*}
\varepsilon \\
\{A\} \\
\{B,D\} \\
\{C,D\}
\end{align*}
\]
\[
\begin{align*}
a \\
b \\
\epsilon
\end{align*}
\]
NFA/DFA complexity

• Thompson's construction
 – At most two new states and four transitions per regex character
 – Thus, a linear space increase with respect to the # of regex characters
 – Constant # of operations per increase means linear time as well

• NFA execution
 – Proportional to both NFA size and input string size (multiplicatively)
 – Must track multiple simultaneous "current" states

• Subset construction
 – Potential exponential state space explosion
 – A n-state NFA could require up to 2^n DFA states
 – However, this rarely happens in practice

• DFAs execution
 – Proportional to input string size only (only track a single "current" state)
NFA/DFA complexity

- NFAs build quicker (linear) but run slower
 - Better if you will only run the FA a few times
 - Or if you need features that are difficult to implement with DFAs
- DFAs build slower but run faster (linear)
 - Better if you will run the FA many times (like in a compiler)

<table>
<thead>
<tr>
<th></th>
<th>NFA</th>
<th>DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build time</td>
<td>$O(m)$</td>
<td>$O(2^m)$</td>
</tr>
<tr>
<td>Run time</td>
<td>$O(m \times n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

$m = \text{length of regular expression}$

$n = \text{length of input string}$
Lexing/Scanning w/ DFAs

• One approach:
 – Combine all regexes and build one DFA
 – Run DFA on input until there is no outgoing edge on a character
 • If current state is accepting, generate token and restart
 • Otherwise, back up to most recent accepting state then generate token and restart (if no accepting states were passed, report error)

• Another approach (P1):
 – Build a DFA for each regex
 – Run each DFA in sequence in priority order on input until there is no outgoing edge on the next character
 • If current state is accepting, generate token and restart
 • Otherwise, run the next DFA (if no more DFAs, report error)
Lexers

• Auto-generated
 – Table-driven: generic scanner, auto-generated tables
 – Direct-coded: hard-code transitions using jumps
 – Common tools: lex/flex and similar

• Hand-coded
 – Better I/O performance (i.e., buffering)
 – More efficient interfacing w/ other phases
 – This is what we’ll do for P1
Handling Keywords

• Issue: keywords are valid identifiers

• Option 1: Embed into NFA/DFA
 – Separate regex for keywords
 – Easier/faster for generated scanners

• Option 2: Use lookup table
 – Scan as identifier then check for a keyword
 – Easier for hand-coded scanners
 – (Thus, this is probably easier for P1)
Handling Whitespace

- Issue: whitespace is usually ignored
 - Write a regex and remove it before each new token
- Side effect: some results are counterintuitive
 - Is this a valid token? “3abc”
 - For now, it’s actually two!
 - We’ll reject this sequence later in the parsing phase
Escaped characters

• Issue: some characters must be escaped in regular expressions
 – E.g., “+" or “*”

• Complication: C strings also have escape codes!
 – So you’ll need “\+” or “*”
 – And “\\” for recognizing a slash!