CS 432 Fall 2023

Finite Automata Conversions and Lexing

Finite Automata

- Key result: all of the following have the same expressive power (i.e., they all describe regular languages):
- Regular expressions (REs)
- Non-deterministic finite automata (NFAs)
- Deterministic finite automata (DFAs)
- Proof by construction
- An algorithm exists to convert any RE to an NFA
- An algorithm exists to convert any NFA to a DFA
- An algorithm exists to convert any DFA to an RE
- For every regular language, there exists a minimal DFA
- Has the fewest number of states of all DFAs equivalent to RE

Finite Automata

- Finite automata transitions:

Finite Automata Conversions

- RE to NFA: Thompson's construction
- Core insight: inductively build up NFA using "templates"
- Core concept: use null transitions to build NFA quickly
- NFA to DFA: Subset construction
- Core insight: DFA nodes represent subsets of NFA nodes
- Core concept: use null closure to calculate subsets
- DFA minimization: Hopcroft's algorithm
- Core insight: create partitions, then keep splitting
- DFA to RE: Kleene's construction
- Core insight: repeatedly eliminate states by combining regexes

Thompson's Construction

- Basic idea: create NFA inductively, bottom-up
- Base case:
- Start with individual alphabet symbols (see below)
- Inductive case:
- Combine by adding new states and null/epsilon transitions
- Templates for the three basic operations
- Invariant:
- The NFA always has exactly one start state and one accepting state

Thompson's: Concatenation

A

B

Thompson's: Concatenation

AB

Thompson's: Union

A

B

Thompson's: Union

A|B

Thompson's: Closure

Thompson's: Closure

Thompson's Construction

Concatenation

Subset construction

- Basic idea: create DFA incrementally
- Each DFA state represents a subset of NFA states
- Use null closure operation to "collapse" null/epsilon transitions
- Null closure: all states reachable via epsilon transitions
- Essentially: where can we go "for free?"
- Formally: ε-closure $(\mathrm{s})=\{\mathrm{s}\} \cup\{\mathrm{t} \in \mathrm{S} \mid(\mathrm{s}, \varepsilon \rightarrow \mathrm{t}) \in \delta\}$
- Simulates running all possible paths through the NFA

Null closure of $A=\{A\}$ Null closure of $B=\{B, D\}$ Null closure of $\mathrm{C}=$ Null closure of $D=$

Subset construction

- Basic idea: create DFA incrementally
- Each DFA state represents a subset of NFA states
- Use null closure operation to "collapse" null/epsilon transitions
- Null closure: all states reachable via epsilon transitions
- Essentially: where can we go "for free?"
- Formally: ε-closure $(\mathrm{s})=\{\mathrm{s}\} \cup\{\mathrm{t} \in \mathrm{S} \mid(\mathrm{s}, \varepsilon \rightarrow \mathrm{t}) \in \delta\}$
- Simulates running all possible paths through the NFA

> Null closure of $A=\{A\}$ Null closure of $B=\{B, D\}$ Null closure of $C=\{C, D\}$ Null closure of $D=\{D\}$

Subset construction

- Basic idea: create DFA incrementally
- Each DFA state represents a subset of NFA states
- Use null closure operation to "collapse" null/epsilon transitions
- Null closure: all states reachable via epsilon transitions
- Essentially: where can we go "for free?"
- Formally: ε-closure $(\mathrm{s})=\{\mathrm{s}\} \cup\{\mathrm{t} \in \mathrm{S} \mid(\mathrm{s}, \varepsilon \rightarrow \mathrm{t}) \in \delta\}$
- Simulates running all possible paths through the NFA

$$
\begin{aligned}
& \text { Null closure of } A=\{A\} \\
& \text { Null closure of } B=\{B, D\} \\
& \text { Null closure of } C=\{C, D\} \\
& \text { Null closure of } D=\{D\}
\end{aligned}
$$

Formal Algorithm

SubsetConstruction(S, $\left.\Sigma, \mathrm{s}_{0}, \mathrm{~S}_{\mathrm{A}}, \delta\right)$:

$$
\begin{aligned}
& t_{0}:=\varepsilon \text {-closure }\left(s_{0}\right) \\
& S^{\prime}:=\left\{t_{0}\right\} \quad S_{A}^{\prime}:=\varnothing \quad W:=\left\{t_{0}\right\}
\end{aligned}
$$

while $W \neq \varnothing$:
choose u in W and remove it from W
for each c in Σ :

$$
t:=\varepsilon \text {-closure }(\delta(u, c))
$$

$$
\delta^{\prime}(u, c)=t
$$

if t is not in S^{\prime} then add t to S ' and W add t to S_{A}^{\prime} if any state in t is also in S_{A}
return $\left(\mathrm{S}^{\prime}, \Sigma, \mathrm{t}_{0}, \mathrm{~S}_{\mathrm{A}}^{\prime}, \delta^{\prime}\right)$

Subset Example

Subset Example

Subset Example

Subset Example

Algorithms

- Subset construction is a fixed-point algorithm
- Textbook: "Iterated application of a monotone function"
- Basically: A loop that is mathematically guaranteed to terminate at some point
- When it terminates, some desirable property holds
- In the case of subset construction: the NFA has been converted to a DFA
- In the case of DFA minimization (up next): the DFA has the smallest number of states possible

Hopcroft's DFA Minimization

- Split into two partitions (final \& non-final)
- Keep splitting a partition while there are states with differing behaviors
- Two states transition to differing partitions on the same symbol
- Or one state transitions on a symbol and another doesn't
- When done, each partition becomes a single state

Hopcroft's DFA Minimization

- Split into two partitions (final \& non-final)
- Keep splitting a partition while there are states with differing behaviors
- Two states transition to differing partitions on the same symbol
- Or one state transitions on a symbol and another doesn't
- When done, each partition becomes a single state

Kleene's Construction

- Replace edge labels with REs
- "a" \rightarrow "a" and "a,b" \rightarrow "a|b"
- Eliminate states by combining REs
- See pattern below; apply pairwise around each state to be eliminated
- Repeat until only one or two states remain
- Build final RE
- One state with "A" self-loop \rightarrow "A*"
- Two states: see pattern below

Eliminating states:

Combining final two states:

A*B(C|DA*B)*

Brzozowski's Algorithm

- Direct NFA \rightarrow minimal DFA conversion
- Sub-procedures:
- Reverse(n): invert all transitions in NFA n, adding a new start state connected to all old final states
- Subset(n): apply subset construction to NFA n
- Reach(n): remove any part of NFA n unreachable from start state
- Apply them all in order two times to get minimal DFA
- First time eliminates duplicate suffixes
- Second time eliminates duplicate prefixes
- MinDFA(n) = Reach(Subset(Reverse(Reach(Subset(Reverse(n))))))
- Potentially easier to code than Hopcroft's algorithm

Brzozowski's Algorithm

- $\operatorname{MinDFA}(\mathrm{n})=\operatorname{Reach}(\operatorname{Subset}(\operatorname{Reverse}(\operatorname{Reach}(\operatorname{Subset}(\operatorname{Reverse}(\mathrm{n}))))))$

Example from
EAC (p.76)

Summary and Review

DFAs

NFAs

- S: set of states
- Σ : alphabet (set of characters)
- δ : transition function: $(S, \Sigma) \rightarrow S$
- S_{0} : start state
- S_{A} : accepting/final states
accept():
$s:=s_{0}$
for each input c :

$$
s:=\delta(s, c)
$$

return $s \in S_{A}$

- δ may return a set of states
- δ may contain ε-transitions
- δ may contain transitions to multiple states on a symbol

accept():

$$
T:=\varepsilon \text {-closure }\left(s_{o}\right)
$$

for each input c :

$$
N:=\{ \}
$$

for each $\sin T$:

$$
N:=N \cup \varepsilon \text {-closure }(\delta(s, c))
$$

$$
T:=N
$$

return $\left|T \cap S_{A}\right|>0$

Summary and Review

- RE to NFA: Thompson's construction
- Core insight: inductively build up NFA using "templates"
- Core concept: use null transitions to build NFA quickly
- NFA to DFA: Subset construction
- Core insight: DFA nodes represent subsets of NFA nodes
- Core concept: use null closure to calculate subsets
- DFA minimization: Hopcroft's algorithm
- Core insight: create partitions, then keep splitting
- DFA to RE: Kleene's construction
- Core insight: repeatedly eliminate states by combining regexes

NFA/DFA complexity

- What are the time and space requirements to...
- Build an NFA?
- Run an NFA?
- Build a DFA?
- Run a DFA?

NFA/DFA complexity

- Thompson's construction
- At most two new states and four transitions per regex character
- Thus, a linear space increase with respect to the \# of regex characters
- Constant \# of operations per increase means linear time as well
- NFA execution
- Proportional to both NFA size and input string size (multiplicatively)
- Must track multiple simultaneous "current" states
- Subset construction
- Potential exponential state space explosion
- A n-state NFA could require up to 2^{n} DFA states
- However, this rarely happens in practice
- DFAs execution
- Proportional to input string size only (only track a single "current" state)

NFA/DFA complexity

- NFAs build quicker (linear) but run slower
- Better if you will only run the FA a few times
- Or if you need features that are difficult to implement with DFAs
- DFAs build slower but run faster (linear)
- Better if you will run the FA many times (like in a compiler)

	NFA	DFA
Build time	$\mathrm{O}(m)$	$\mathrm{O}\left(2^{m}\right)$
Run time	$\mathrm{O}(m \times n)$	$\mathrm{O}(n)$

$$
\begin{aligned}
& m=\text { length of regular expression } \\
& n=\text { length of input string }
\end{aligned}
$$

Lexing/Scanning w/ DFAs

- One approach:
- Combine all regexes and build one DFA
- Run DFA on input until there is no outgoing edge on a character
- If current state is accepting, generate token and restart
- Otherwise, back up to most recent accepting state then generate token and restart (if no accepting states were passed, report error)
- Another approach (P1):
- Build a DFA for each regex
- Run each DFA in sequence in priority order on input until there is no outgoing edge on the next character
- If current state is accepting, generate token and restart
- Otherwise, run the next DFA (if no more DFAs, report error)

Lexers

- Auto-generated
- Table-driven: generic scanner, auto-generated tables
- Direct-coded: hard-code transitions using jumps
- Common tools: lex/flex and similar
- Hand-coded
- Better I/O performance (i.e., buffering)
- More efficient interfacing w/ other phases
- This is what we'll do for P1

Handling Keywords

- Issue: keywords are valid identifiers
- Option 1: Embed into NFA/DFA
- Separate regex for keywords
- Easier/faster for generated scanners
- Option 2: Use lookup table
- Scan as identifier then check for a keyword
- Easier for hand-coded scanners
- (Thus, this is probably easier for P1)

Handling Whitespace

- Issue: whitespace is usually ignored
- Write a regex and remove it before each new token
- Side effect: some results are counterintuitive
- Is this a valid token? "3abc"
- For now, it's actually two!
- We'll reject this sequence later in the parsing phase

Escaped characters

- Issue: some characters must be escaped in regular expressions
- E.g., "+" or "*"
- Complication: C strings also have escape codes!
- So you'll need "
+" or "
*"
- And "

"" for recognizing a slash!

