CS 432
Fall 2022

Mike Lam, Professor

Data-Flow Analysis

Compilers

Checked AST
Source code Tokens Syntax tree + Symtables
int main() { EEEED E
il |:> ooo |:> :> imm
return Xx; DDDD
O000oao
oono
Lexing Parsing Analysis
(P2) (P3) (P4)
Checked AST Current iioed
R imized . :
+ Symtables linear IR v TPUEREDT " Machine code
E ; ma{g;dl 4= r1 .) 7f 45 4c 46 01
i |:;> g II(> A e |:E> o0 o0 a0 00 oo
IR Code Genr-.__ Optimization " Machine

(P5)

Y
S
i
~ -

.”
-
-
-
-

-~

Code Gen

-
-="

I Optimization

loadIl 0 => r1

;nE gf storeAI r1 => [bp-4]
i1l 11:
while (a < 13) 1 loadAI [bp-4] => r2
-4 ' loadI 10 => r3
; cmp_LT r2, r3 =>r4
cbr r4 => 12, 13
12:
loadAI [bp-4] => r5
loadIl 0 => r1 loadIl 1 => r6
loadI 10 => r2 add r5, r6 => r7
11: storeAI r7 => [bp-4]
cmp_LT r1, r2 => r4 jump 11
cbr r4 => 12, 13 13:
12:

addI r1, 1 => r1

jump 11
13: -
storeAl r1 => [bp-4]

loadIl 10 => r1
storeAl r1 => [bp-4]

I Optimization is Hard

* Problem: it's hard to reason about all possible executions

— Preconditions and inputs may differ
— Optimizations should be correct and efficient in all cases

* Optimization tradeoff: investment vs. payoff

- "Better than naive" is fairly easy
- "Optimal" is impossible
- Real world: somewhere in between

» Better speedups with more static analysis
e Usually worth the added compile time

* Also: linear IRs (e.g., ILOC) don't explicitly expose control flow
— This makes analysis and optimization difficult

I Control-Flow Graphs

e Basic blocks

- "Maximal-length sequence of branch-free code"
- "Atomic" sequences (instructions that always execute together)

e Control-flow graph (CFG)

— Nodes/vertices for basic blocks

— Edges for control transfer
* Branch/jump instructions (explicit) or fallthrough (implicit)
* pis a predecessor of q if there is a path from p to g
- p is an immediate predecessor if there is an edge directly from p to g

e (is asuccessor of p if there is a path from p to g
- ¢ Is an immediate successor if there is an edge directly from p to g

I Control-Flow Graphs

e Conversion: linear IR to CFG

- Find leaders (initial instruction of a basic block) and build blocks
* Every call or jump target is a leader

- Add edges between blocks based on jumps/branches and fallthrough
— Complicated by indirect jumps (none in our ILOC!)

foo
loadAI [bp-4] => r1
foo:

cbr ri1 => 11, 12
loadAI [bp-4] => r1

cbr r1 => 11, 12

11: 11 12
loadI 5 => r2 loadI 5 => r2 _

1 Jump 13 >> jump 13 loadI 10 => r2

loadI 10 => r2
13: 13

storeAI r2 => [bp-4] storeAl r2 => [bp-4]

I Static CFG Analysis

* Single block analysis Is easy, and trees are too

e General CFGs are harder

- Which branch of a conditional will execute?
- How many times will a loop execute?

e How do we handle this?

- One method: iterative data-flow analysis

- Simulate all possible paths through a region of code
- “Meet-over-all-paths” conservative solution

- Meet operator combines information across paths

I Semilattices

* In general, a semilattice Is a set of values L, special values
T (top) and L (bottom), and a meet operator ~ such that

-—a=biffa®*b=0Db

-—a>biffazbanda#b

-—a*"T=a forallael

-—arl=1 forallael
* Partial ordering

- Monotonic

{} (T)

I
>

} 4, ds} 4, 4]

ddzdj (L)

Figure 9.22 from Dragon book: semilattice of
definitions using U (set union) as the meet operation

I Constant propagation

* For sparse simple constant propagation (SSCP), the lattice
IS very shallow

.
- ¢ T=c forallc

v G Gj Ck C Cpy---

-¢cM1=1 forallc

—ci’\cj:ciifci:cj i
_ Semilattice for Constant
- C, N Cj =1 if C. x Cj Propagation

* Basically: each SSA value is either unknown (T), a known constant
(c), oritis avariable (1)
— Initialize to unknown (T) for all SSA values
— Interpret operations over lattice values (always lowering)
- Propagate information until convergence

T

e+ Cf € Cx Cf Cp s

AV

L

Semilattice for Constant
Propagation

ri: T

r2: T
foo
loadAI [bp-4] => r1
cbr r1 => 11, 12

11

12
}oadI 5 =>r2 loadI 10 => r2
jump 13
N ri: 1
5 r2: 10

storeAI r2 => [bp-4]

ri: .
r2:. 1

I Data-Flow Analysis

Define properties of interest for basic blocks
— Usually sets of blocks, variables, definitions, etc.
Define a formula for how those properties change within a block

- F(B) is based on F(A) where A is a predecessor or successor of B
— This is basically the meet operator for a particular problem

Specify initial information for all blocks

- Entry/exit blocks usually have special initial values
Run an iterative update algorithm to propagate changes

- Keep running until the properties converge for all basic blocks
Key concept: finite descending chain property
- Properties must be monotonically increasing or decreasing

- Otherwise, termination is not guaranteed

I Data-Flow Analysis

* This kind of algorithm is called fixed-point iteration
— It runs until it converges to a “fixed point”
e Forward vs. backward data-flow analysis

- Forward: along graph edges (based on predecessors)
- Backward: reverse of forward (based on successors)

 Particular data-flow analyses:

- Constant propagation
- Dominance

- Liveness

- Available expressions
- Reaching definitions

— Anticipable expressions

Dominance

* Block A dominates block B if Ais on every path from the entry to B
- Block A immediately dominates block B if there are no blocks between them
- Block B postdominates block A if B is on every path from A to an exit
- Every block both dominates and postdominates itself

* Simple dataflow analysis formulation

- preds(b) is the set of blocks that are predecessors of block b

- Dom(b) is the set of blocks that dominate block b By
* intersection of Dom for all immediate predecessors lf ‘
- PostDom(b) is the set of blocks that postdominate block b / \
 (similar definition using succs(b))
/ \
Initial conditions: Dom(entry) = {entry | \ /
Y b#entry, Dom(b) = {all blocks | /

Updates: Dom(b)={b}U (M Dom(p) jf\ /

p€ preds(b)

Dominance example

Initial conditions: Dom(entry) = {entry |

Y b#entry, Dom(b) = {all blocks |

Updates: Dom(b)={bjuUu () Dom(p)

p€Epreds(b)

foo
loadAI [bp-4] => r1
Dom(foo) = {foo} cbr ri1 => 11, 12
Dom(l1) = {foo, 11}
Dom(12) = {foo, 12}
Dom(13) = {foo, 13} u 12

toadI 5 => r2 loadI 10 => r2
jump 13

S~

storeAI r2 => [bp-4]

I LIveness

* Variable v is live at point p if there is a path from p to a use of v with
no intervening assignment to v

— Useful for finding uninitialized variables (live at function entry)
— Useful for optimization (remove unused assignments)
— Useful for register allocation (keep live vars in registers)

* |nitial information: UEVar and VarKill

- UEVar(B): variables used in B before any redefinition in B

* (“upwards exposed” variables)
- VarKill(B): variables that are defined (“killed”) in B

« Textbook notation note: X nY=X-Y
Initial conditions: ¥'b, LiveOut(b)= &

Updates: LiveOut(b)= |J UEVar(s) U (LiveOut(s)— VarKill(s))

s€succs(b)

Bp: i « 1 By
- By .
By: return I USRI
B;: g : Bez § ok ome /31\
Pl e
(a < ¢) = By,Bs (a < d) - Bg,Bg B; Bs
Ba: b « Bs: il A < \
3 : . y B‘}' B.ﬁ BS
—% By B7: b « ... \B /
— Bj 7
By: y <« a+b /
z <« c+d L R B;
1 4§ # 1 > _ I J
(i < 100) — By,Bs ' By
(a) Code for the Basic Blocks (b) Control-Flow Graph
UEVAR @ @] fa;b.e.d,i] B @ @ @
VARKILL (i} ({a.c} ({b,c,d} ez, 1] @ {a.d} {d} (b} {c]
(c) Initial Information
Vb, LiveOut(b)= 8 LiveOut(b)= |J UEVar(s)U (LiveOut(s)— VarKill(s))

sesuccs(b)

I Alternative definition

e Define Liveln as well as LiveOut

— Two formulas for each basic block

- Makes things a bit simpler to reason about
* Separates change within block from change between blocks

Vb, Liveln(b)= @, LiveOut(b)= &
Liveln(b) = UEVar (b) U (LiveOut (b) — VarKill (b))

LiveOut(b)= U Liveln(s)

s€suces(b)

Liveness example

Vb, Liveln(b)= &, LiveOut(b)= @

LiveIn(b) = UEVar(b) U (LiveOut (b) — VarKill(b))

LiveOut(b) = | Liveln(s) UEVar (foo)

VarKill(foo ri
se€succs(b) £00 () {r1}

loadAI [bp-4] => r1
cbr ri1 => 11, 12

LiveIn (foo) = {}
LiveOut(foo) = {} UEVar(1l1) = {3} UEVar(12) = {}
varkill(l1) = {r2} varkill(12) = {r2}
LiveIn (11) = {} 11 12
LiveOut(ll) = {r2} loadl 5 => r2 Toadl 10 —> 12
jump 13 _
LiveIn (12) = {}
LiveOut(1l2) = {r2}
_ 13
Liveln (L3) = {r2} storeAl r2 => [bp-4]
LiveOut(13) = {}
UEVar (13) = {r2}
varkill(13) = {3}

I Block orderings

* Forwards dataflow analyses converge faster with reverse postorder
processing of CFG blocks

- Visit as many of a block’s predecessors as possible before visiting that block
Strict reversal of normal postorder traversal

Similar to concept of topological sorting on DAGs

NOT EQUIVALENT to preorder traversal!
Backwards analyses should use reverse postorder on reverse CFG

Depth-first search:

A, B, D, B, A, C, A (left first)
A, C, D, C, A, B, A (right first)
Valid preorderings:

A, B, D, C (left first)
A, C, D, B (right first)

Valid postorderings:

D, B, C, A (left first)

D, C, B, A (right first)

Valid reverse postorderings:

A,CB,D
A, B,C,D

Dom(entry) = {entry }

YV b#entry, Dom(b) = {all blocks) Dominance
Dom(b)={blu (1 Dom(p)
p€Epreds(b)

Vb, LiveOut(b)= &

LiveOut(b)= |J UEVar(s)U (LiveOut(s) — VarKill(s)) (é_:\ée\lgre;isosr‘)

s€succs(b)

Vb, Liveln(b)= &, LiveOut(b)= &
LiveIn(b) = UEVar(b) U (LiveOut (b) — VarKill(b)) Ore e
LiveOut(b)= | Liveln(s)

s€succs(b)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

