
Decaf Language Reference

Mike Lam, James Madison University

Fall 2021

1 Introduction

Decaf is an imperative language similar to Java or C, but is greatly simplified compared to those languages. It
will allow us to implement a compiler for the entire language in a single semester while still exploring all of the
basic facets of a modern compiler.

This project is originally based on a project from course 6.035 at the Massachusetts Institute of Technology.
However, significant changes have been made to the language. This document is the only authoritative reference
to the version of Decaf used in CS 432 and CS 630 at James Madison University.

Here is an example program in Decaf:

// add.decaf - simple addition example

def int add(int x, int y)

{

return x + y; // add the two parameters

}

def int main()

{

int a;

a = 3;

return add(a, 2);

}

Here is the output from running the reference compiler on the above program:

$./decaf add.decaf

RETURN VALUE = 5

Here are some important points of difference between Decaf and more general-purpose procedural languages
like C and Java:

• Decaf is not object-oriented.

• Function declarations must begin with the def keyword.

• Variable declarations may not include initializations.

• Variable declarations must all occur together at the top of their scope.

• Many syntactic sugar operators (such as += or ++) are not included.

• Boolean expression evaluation is not guaranteed to be short-circuited.

1

2 Lexical Considerations

There are six token classes in Decaf:

Name Description
ID identifiers
KEY keywords
DEC decimal literals
HEX hexadecimal literals
STR string literals
SYM symbols

Identifiers and keywords must begin with an alphabetic character and may contain alphanumeric characters and
the underscore (‘ ’). A keyword can be thought of a special identifier that is “reserved” and cannot be used for
actual variables or functions. Both keywords and identifiers are case-sensitive, and all keywords are lowercase.
For example, if is a keyword, but IF is a variable name; foo and Foo are two different names referring to two
distinct variables. The following are all of the supported keywords in Decaf:

def if else while return break continue int bool void true false

In addition, all of the following words are reserved; they are not currently keywords but may be used in future
versions of the language and thus should not be used as identifier names:

for callout class interface extends implements new this string float double null

Keywords and identifiers must be separated by white space, or a token that is neither a keyword nor an identifier.
For example, iftrue is a single identifier, not two distinct keywords. If a sequence begins with an alphabetic
character, then it and the longest sequence of alphanumeric characters and underscores following it forms a
token (either a keyword or an identifier).

Symbols can be split into three types: 1) grouping operators: parentheses, brackets, curly braces, assignment
(equals), commas, and semicolons, 2) binary operators (BINOP) and 3) unary operators (UNOP). There are a
variety of binary and unary operators in Decaf, including both arithmetic operators (e.g., plus and minus) and
boolean operators (e.g., less-than and boolean OR). The following are all supported symbols in Decaf:

({ [] }) , ; = + - * / % < > <= >= == != && || !

Integer literals are unsigned and may be written in either decimal or hexadecimal form. The latter will always
begin with the sequence 0x, and may contain either lower- or upper-case letter digits. Neither decimal nor
hexadecimal literals may be zero-padded at the beginning. Note that in Decaf integer literals are unsigned but
integers themselves are signed. Thus, a negative “literal” in Decaf code is really an unsigned literal with the
negation prefix operator (“-”) applied.

String literals must be enclosed in double quote marks and may contain four kinds of escaped characters:
newlines (‘\n’), tabs (‘\t’), quotes (‘\"’), and backslashes (‘\\’). ASCII is the only supported character set.

Comments are started by “//” and are terminated by the end of the line. “Whitespace” may appear between
any lexical tokens, and consists of one or more spaces, tabs, newlines, or carriage returns. Comments and
whitespace have no effect on a Decaf program’s execution, and both should be discarded during the lexical
analysis phase of compilation.

Decaf programs should be stored in files with the “.decaf” extension, and a single Decaf program may not
span multiple files.

2

3 Syntax

The following is the Decaf grammar (in EBNF form):

Program →
(
VarDecl | FuncDecl

)
*

VarDecl → Type ID
(
‘[’ DEC ‘]’

)
? ‘;’

Type → int | bool | void

FuncDecl → def Type ID ‘(’ Params? ‘)’ Block
Params → Type ID

(
‘,’ Type ID

)
*

Block → ‘{’ VarDecl* Stmt* ‘}’

Stmt → Loc ‘=’ Expr ‘;’
| FuncCall ‘;’
| if ‘(’ Expr ‘)’ Block

(
else Block

)
?

| while ‘(’ Expr ‘)’ Block
| return Expr? ‘;’
| break ‘;’
| continue ‘;’

Expr → Expr BINOP Expr
| UNOP BaseExpr
| BaseExpr

BaseExpr → ‘(’ Expr ‘)’
| Loc
| FuncCall
| Lit

Loc → ID
(
‘[’ Expr ‘]’

)
?

FuncCall → ID ‘(’ Args? ‘)’
Args → Expr

(
‘,’ Expr

)
*

Lit → DEC | HEX | STR | true | false

The following is a key to some of the meta-notation used above:

Example Description
Foo non-terminal
foo keyword
FOO token class (see Section 2)
‘a’ symbol consisting of character ‘a’
x? zero or one occurences of x (i.e., optional)
x* zero or more occurences of x()

used for grouping
| designates alternatives

3

Although this is not reflected in the reference grammar on the previous page, all binary operations in Decaf
are left-associative. In addition, there are seven levels of operator precedence, shown in the table below from
highest to lowest:

Operators Comments
- ! unary negation (integer and boolean)
* / % integer multiplication, division, and remainder
+ - integer addition and subtraction

< <= >= > boolean ordinal relation
== != boolean equality
&& boolean conjunction (AND)
|| boolean disjunction (OR)

As written above, this grammar is neither LL(1) nor LR(1); however, it can be transformed (using standard
CFG transformations) into a grammar that is both. The process of performing these transformations is a useful
exercise for the reader and a vital component of building a parser for the language.

Note that variables may be declared void; such declarations are allowed by the grammar but will be flagged
during the static analysis phase.

Because the provided grammar is not yet suitable for directly building a parser, there are many possible correct
LL(1) and LR(1) grammars, and thus many correct parse trees for any given Decaf program. Thus, it is
important to have a clearly-defined abstract syntax tree format that is independent of any specific parsing
implementation. Here is a list of standardized Decaf AST objects:

Program (contains lists of VarDecls and FuncDecls)

VarDecl

FuncDecl (contains a Block)

Block (contains a list of VarDecls and a list of statements)

Statements:

Assignment (contains a Location and an expression)

Conditional (contains an expression and either one or two Blocks)

WhileLoop (contains an expression and a Block)

Return (contains an optional expression)

Break

Continue

Expressions:

BinaryOp (contains two child expressions)

UnaryOp (contains one child expression)

Location

FuncCall (contains a list of expressions)

Literal

All of these are stored in an ASTNode struct with a discriminated (“tagged”) anonymous union for member data.
See ast.h for all definitions.

4

4 Semantics

A Decaf program consists of a series of variable and function declarations.

4.1 Variables

All Decaf variables are statically typed, and there are only two valid basic types: signed integers that are 64 bits
wide (int) and booleans (bool). Variables may be declared outside a function; such variables are considered
“global” variables and are accessible from all functions. Variables declared inside a function or block are only
visible inside the corresponding lexical scope (see Section 4.3 for details).

Decaf supports simple, fixed-length, one-dimensional, static arrays. Arrays must be declared global and their
size is specified at their declaration time. Arrays are indexed from 0 to N − 1, where N is the size of the array
(which must be greater than zero). The usual bracket notation is used to index arrays; an index must be present
for all array accesses and the index expression must evaluate to an integer. Because arrays have a compile-time
fixed size and cannot be declared as parameters (or local variables), there is no facility for querying the length
of an array variable in Decaf. Arrays may be of either basic type (integers or booleans).

Assignment is only permitted for scalar values. Decaf uses value-copy semantics, and the assignment “<loc> =

<expr>” copies the value resulting from the evaluation of <expr> into <loc>. If a variable is referenced before
it is assigned, the result is undefined. For assignments to an array element, the index is evaluated before the
value.

4.2 Functions

In Decaf, functions must be declared using the “def” keyword. Functions must either be “void” or have a single
return value; they may take an unlimited number of parameters. Each parameter must have a formally-declared
type. Arrays may NOT be passed as function parameters.

Every Decaf program must contain a function called main that takes no parameters and returns an int. Execu-
tion of the program begins at the main function. Functions may be called before their definition in the source
code.

Decaf does not provide support for variadic parameters (e.g., “printf” in C).

4.3 Scope

Decaf uses very simple static scoping rules. There are at least two valid scopes at any point in a Decaf program:
the global scope and the function scope. The global scope consists of names of variables and functions introduced
at the top level of the source code. The function scope consists of names of variables and formal parameters
introduced in a function declaration. Additional local scopes exist within each block in the code; these can
come after if or while statements or anywhere there is a new block.

An identifier introduced in a function scope can shadow an identifier from the global scope. In this case, the
identifier may only be used as a variable until the variable leaves scope. Similarly, identifiers introduced in local
scopes shadow identifiers in less deeply nested scopes, the function scope, and the global scope.

No identifier may be defined more than once in the same scope. Thus, variable and function names must all
be distinct in the global scope, and local variable names and formal parameters names must be distinct in each
local scope.

5

4.4 Function Calls

Function invocation involves (1) passing argument values from the caller to the callee, (2) executing the body
of the callee, and (3) returning to the caller, possibly with a result.

Arguments are passed by value and the semantics can be thought of in terms of assignment: the formal arguments
of a function are like local variables of the function and are initialized by assignment to the values resulting
from the evaluation of the argument expressions. The arguments are evaluated from left to right.

The body of the callee is then executed by executing the statements of its function body in sequence.

A function that is declared with a void return type can only be called as a statement, i.e., it cannot be used
in an expression. Such a function returns control to the caller when return is called (no result expression is
allowed) or when the textual end of the callee is reached.

A function that returns a result may be called as part of an expression, in which case the result of the call is the
result of evaluating the expression in the return statement when this statement is reached. If control reaches
the textual end of a function that returns a result, the result is undefined.

A function that returns a result may also be called as a statement. In this case, the result is ignored.

4.5 Control Structures

The if statement has the same semantics as in standard procedural programming languages. First, the condi-
tional expression is evaluated. If the result is true, the “true” block is executed. Otherwise, the “else” block is
executed, if it exists. Since Decaf requires that the “true” and “else” blocks be enclosed in braces, there is no
ambiguity in matching an “else” block with its corresponding if statement.

The while statement also has the same semantics as in standard procedural languages. First, the guard
expression is evaluated. If the result is true, the loop body is executed. After the loop body executes one
iteration, the guard expression is re-evaluated. If the guard expression evaluates to false at any point at which
it is evaluated, the loop terminates and execution resumes at the statement following the loop.

Decaf provides support for the standard continue and break statements, which immediately transfer control
to the beginning or end of the loop (respectively). In the case of the former, the guard expression should be
re-checked before the loop body is executed again. These statements may not occur outside of a while loop.

4.6 Expressions

Expressions follow the normal rules for evaluation. In the absence of other constraints, operators with the same
precedence are evaluated from left to right, and operands are also evaluated left to right. Parentheses may be
used to override normal precedence.

A location expression evaluates to the value contained by the location. The semantics of this differ depending
on whether the location is an l-value or an r-value. Array operations are discussed in Section 4.1.

Method invocation expressions are discussed in Section 4.4.

Integer literals evaluate to their integer value. Boolean literals are evaluated to the integer values 1 (true) and
0 (false). String literals do not evaluate to anything; since variables cannot store strings, their only valid use is
as an argument to predefined functions (e.g., the print str function; see Section 4.7).

The arithmetic operators (arith op and unary minus) have their usual precedence and meaning, as do the
relational operators (rel op). % computes the remainder of dividing its operands.

Relational operators are used to compare integer expressions and may not be used on boolean variables. The
equality operators (== and != are valid for both int and boolean types, and can be used to compare any two
expressions having the same type. The result of a relational operator or equality operator has type boolean.
Boolean expression evaluation is not guaranteed to be short-circuited.

6

4.7 Input and Output

Decaf supports only very primitive I/O. There is currently no support for input; all input values must be
hard-coded in the source. Output is supported using the following predefined library functions:

void print_str(string value)

void print_int(int value)

void print_bool(bool value)

The first two operate as expected. The last one (print bool) prints the internal representation of the boolean
(i.e., 1 for true and 0 for false). None of these functions add a newline at the end of the input; if newlines are
desired they must be printed explicitly using the print str function.

These functions are not actually implemented in Decaf (they are provided by the Decaf standard library) and
thus must be manually added to the global symbol table during static analysis to ensure that calls to them are
properly type-checked. Here are some examples of their use:

def int main()

{

print_str("Hello!"); // result: "Hello!"

print_int(2+3); // result: "5"

print_bool(5 < 9); // result: "1"

print_bool(5 < 2); // result: "0"

return 0;

}

5 Interpreter/Architecture Details

The reference compiler for Decaf includes an interpreter that simulates running a Decaf program compiled to
ILOC on an architecture that can directly execute ILOC. This architecture has limitations that are relevant to
Decaf programmers although they are not part of the Decaf language itself.

Features of the simulator architecture:

• 64-bit words

• Unlimited 64-bit signed integer virtual registers

• Four special-purpose 64-bit integer registers:

1. IP: instruction pointer

2. SP: stack pointer

3. BP: base pointer

4. RET: function return value

• 64Kb address space with stack and static data regions

• Fixed-size, read-only code region indexed by instruction

The most important limitation to keep in mind is the 64Kb address space, which limits the size of the stack
and therefore the depth of recursive functions.

In addition, the output functions listed in the previous section must be implemented using the PRINT instruction
in ILOC, and as such must be handled as special cases during code generation.

7

6 Type Checking

Here is an incomplete list of basic type inference and type checking rules for Decaf. Each rule consists of a series
of antecedents or premises (above the line) and a conclusion (below the line). In these rules, Γ ` e : τ means
that “e has type τ in environment Γ”. If τ is omitted, the statement simply means that “e is well-typed” (i.e.,
it has no type errors). Here, Γ (called the typing context or type environment) refers to the local symbol table
(with the ability to look up symbols recursively through its parent table). The absence of Γ indicates that no
symbol table is necessary to type-check e.

Expressions:

TDec ` DEC : int
THex ` HEX : int

TStr ` STR : str

TTrue ` true : bool
TFalse ` false : bool

TSubExpr
Γ ` e : τ

Γ ` ‘(‘ e ‘)‘ : τ

TLoc
ID : τ ∈ Γ
Γ ` ID : τ

TArrLoc
ID : τ [] ∈ Γ Γ ` e : int

Γ ` ID ‘[‘ e ‘]‘ : τ

TFuncCall
ID : (τ1, τ2, ..., τn)→ τr ∈ Γ Γ ` e1 : τ1 Γ ` e2 : τ2 ... Γ ` en : τn

Γ ` ID ‘(‘ e1, e2, ..., en ‘)‘ : τr

TNot
Γ ` e : bool

Γ ` ‘!‘ e : bool
TNeg

Γ ` e : int
Γ ` ‘-‘ e : int

TAdd
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ‘+‘ e2 : int
(similar for TSub (-), TMul (*), TDiv (/) and TMod (%))

TLe
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ‘<‘ e2 : bool
(similar for TLeq (<=), TGe (>), and TGeq (>=))

TEq
Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 ‘==‘ e2 : bool
(similar for TNeq (!=))

TAnd
Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 ‘&&‘ e2 : bool
(similar for TOr (||))

Statements:

TIf
Γ ` e : bool Γ ` b

Γ ` if ‘(‘ e ‘)‘ b
TIfElse

Γ ` e : bool Γ ` b1 Γ ` b2
Γ ` if ‘(‘ e ‘)‘ b1 else b2

TWhile
Γ ` e : bool Γ ` b
Γ ` while ‘(‘ e ‘)‘ b

TAssign
Γ ` ID : τ Γ ` e : τ

Γ ` ID ‘=‘ e ‘;‘
TArrAssign

Γ ` ID[0] : τ Γ ` ei : int Γ ` ev : τ

Γ ` ID ‘[‘ ei ‘]‘ ‘=‘ ev ‘;‘

TBlock
Γ′ ` s1 : τ1 Γ′ ` s2 : τ2 ... Γ′ ` sn : τn

Γ ` ‘{‘ s1, s2, ..., sn ‘}‘
where Γ′ = Γ ∪ {vi : τi ∈ V ars}

8

7 Operational Semantics

Here is an incomplete list of rules for generating ILOC code from Decaf code. In this sense they also encode
operational semantics for the Decaf language. Each rule consists of a series of antecedents (above the line) and
a conclusion (below the line). In these rules, s → C means “statement s generates code C.” For expressions,
e → 〈C, r〉 means that “expression e generates code C with the result stored in virtual register r.” The
semicolon operator (;) is used to concatenate code.

Expressions:

STrue
true → 〈loadI 1 => r, r〉

SFalse
false → 〈loadI 0 => r, r〉

SInt
INT → 〈loadI INT => r, r〉

SLoc
rb = base(ID) xo = offset(ID)

ID → 〈loadAI [rb+xo] => r, r〉

SArrLoc
e→ 〈Ce, re〉 xs = size(ID) rb = base(ID)

ID[e] → 〈Ce; multI re,xs => ro; loadAO [rb+ro] => r, r〉

SFuncCall
e1 → 〈C1, r1〉 e2 → 〈C2, r2〉 ... en → 〈Cn, rn〉

ID(e1,e2,...,en) → 〈C1; C2; ... Cn;
(
push rn; ... push r2; push r1; call ID;

addI SP, 8n => SP; i2i RET => rr

)
, rr〉

SNot
e→ 〈C, r1〉

‘!‘ e → 〈C; not r1 => r2, r2〉
SAdd

e1 → 〈C1, r1〉 e2 → 〈C2, r2〉
e1 ‘+‘ e2 → 〈C1; C2; add r1,r2 => r3, r3〉

(similar for SNeg (-)) (similar for SSub (-), SMul (*), SDiv (/), SAnd (&&), and SOr (||))

(Note: SMod (%) is purposefully omitted as an exercise for the reader)

SLe
e1 → 〈C1, r1〉 e2 → 〈C2, r2〉

e1 ‘<‘ e2 → 〈C1; C2; cmp LT r1,r2 => r3, r3〉
(similar for SLeq (<=), SGe (>), SGeq (>=), SNeq (!=), and SEq (==))

Statements:

SIf
e→ 〈Ce, re〉 b→ Cb

if ‘(‘ e ‘)‘ b → Ce; cbr re => l1,l2; l1:; Cb; l2:

SIfElse
e→ 〈Ce, re〉 b1 → C1 b2 → C2

if ‘(‘ e ‘)‘ b1 else b2 → Ce; cbr re => l1,l2; l1:; C1; jump l3; l2:; C2; l3:

SWhile
e→ 〈Ce, re〉 b→ Cb

while ‘(‘ e ‘)‘ b → l1:; Ce; cbr re => l2,l3; l2:; Cb; jump l1; l3:

SAssign
e→ 〈Ce, re〉 rb = base(ID) xo = offset(ID)

ID = e → Ce; storeAI re => [rb+xo]

SArrAssign
ei → 〈Ci, ri〉 ee → 〈Ce, re〉 xs = size(ID) rb = base(ID)

ID[ei] = ee → Ce; Ci; multI ri,xs => ro; storeAO re => [rb+ro]

SBlock
s1 → C1 s2 → C2 ... sn → Cn

‘{‘ s1, s2, ..., sn ‘}‘ → C1; C2; ... Cn

9

8 Application Binary Interface

The following calling conventions should be respected by all ILOC code generated from Decaf programs. In
these conventions the caller is the procedure making the call and the callee is the procedure that is being called.
Further, the prologue and epilogue are segments of code located at the beginning and end of every procedure,
respectively. Finally, the precall and postreturn sequences are segments of code located immediately preceding
and immediately following the actual call instruction.

• In the precall, the caller must perform the following tasks in order:

1. Calculate the values of all actual parameters in order.

2. Push all actual parameter values on the stack in reverse order.

3. Save any live general-purpose registers (if applicable).

• In the prologue, the callee must perform the following tasks in order:

1. Save the caller’s base pointer by pushing it on the stack.

2. Set the callee’s base pointer using the stack pointer.

3. Allocate space for local variables and/or spilled registers by decrementing the stack pointer. This operation
must be emitted even if the number of bytes required is zero.

• The callee must access its parameters using positive static offsets from the base pointer.

• The callee must access its local variables using negative static offsets from the base pointer.

• In the epilogue, the callee must perform the following tasks in order:

1. Save the return value in the RET register (if applicable).

2. Restore the stack pointer from the base pointer.

3. Restore the caller’s base pointer by popping it from the stack.

• In the postreturn, the caller must de-allocate any space allocated for parameters that were pushed onto the stack.

Here is an example from the program in Section 1, showing the ILOC instructions that are executed in order:

...

// PRECALL

loadAI [BP-8] => r5 // calculate parameters (in order)

loadI 2 => r6

push r6 // push parameters (reverse order)

push r5

call add // push return address and jump

// PROLOGUE

push BP // save caller base pointer

i2i SP => BP // save stack pointer as callee base pointer

addI SP, 0 => SP // allocate space for local vars (0 bytes)

...

loadAI [BP+16] => r0 // local variables (positive offset from BP)

loadAI [BP+24] => r1

...

i2i r2 => ret // save return value

// EPILOGUE

i2i BP => SP // restore stack pointer

pop BP // restore caller’s base pointer

return // pop return address and jump

// POSTRETURN

addI SP, 16 => SP // deallocate parameters

...

10

