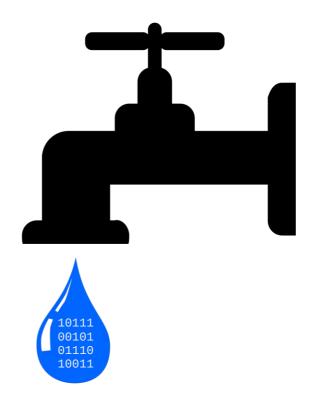
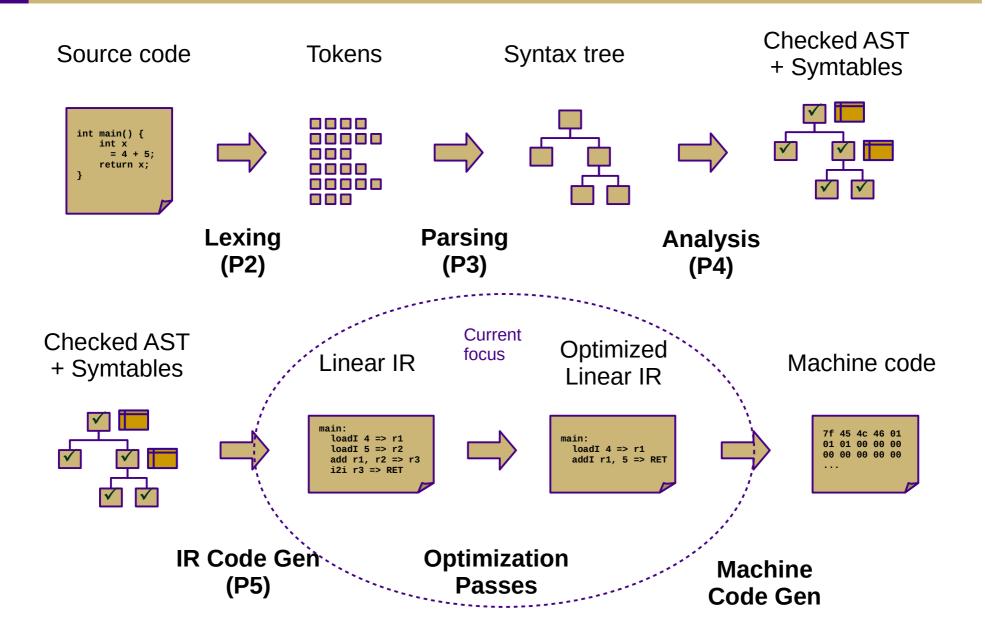
CS 432 Fall 2021

Mike Lam, Professor



Data-Flow Analysis

Compilers



Optimization

```
int a;
 a = 0;
 while (a < 10) {
      a = a + 1;
  }
  loadI 0 => r1
 loadI 10 => r2
11:
 cmp_LT r1, r2 => r4
 cbr r4 => l2, l3
12:
 addI r1, 1 => r1
 jump l1
13:
 storeAI r1 => [bp-4]
```

```
loadI 0 => r1
storeAI r1 => [bp-4]
l1:
    loadAI [bp-4] => r2
    loadI 10 => r3
    cmp_LT r2, r3 => r4
    cbr r4 => l2, l3
l2:
    loadAI [bp-4] => r5
    loadI 1 => r6
    add r5, r6 => r7
    storeAI r7 => [bp-4]
    jump l1
l3:
```

```
loadI 10 => r1
storeAI r1 => [bp-4]
```

Optimization is Hard

- **Problem**: it's hard to reason about all possible executions
 - Preconditions and inputs may differ
 - Optimizations should be correct and efficient in all cases
- Optimization tradeoff: investment vs. payoff
 - "Better than naïve" is fairly easy
 - "Optimal" is impossible
 - Real world: somewhere in between
 - Better speedups with more static analysis
 - Usually worth the added compile time
- Also: linear IRs (e.g., ILOC) don't explicitly expose control flow
 - This makes analysis and optimization difficult

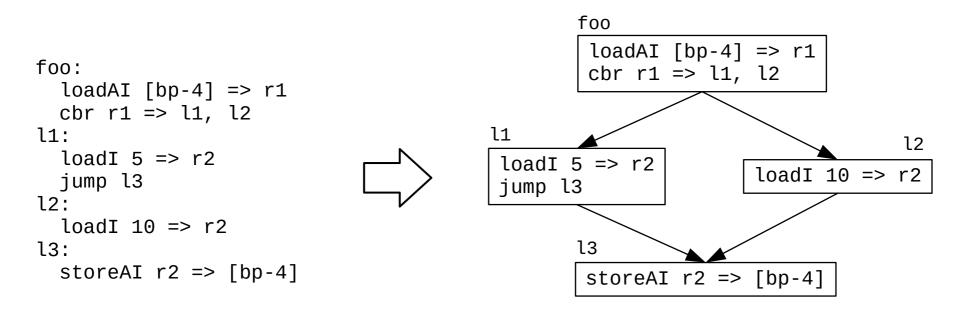
Control-Flow Graphs

Basic blocks

- "Maximal-length sequence of branch-free code"
- "Atomic" sequences (instructions that always execute together)
- Control-flow graph (CFG)
 - Nodes/vertices for basic blocks
 - Edges for control transfer
 - Branch/jump instructions (explicit) or fallthrough (implicit)
 - p is a predecessor of q if there is a path from p to q
 - $\ensuremath{\mathsf{p}}$ is an immediate predecessor if there is an edge directly from $\ensuremath{\mathsf{p}}$ to $\ensuremath{\mathsf{q}}$
 - q is a successor of p if there is a path from p to q
 - q is an immediate successor if there is an edge directly from p to q

Control-Flow Graphs

- Conversion: linear IR to CFG
 - Find leaders (initial instruction of a basic block) and build blocks
 - Every call or jump target is a leader
 - Add edges between blocks based on jumps/branches and fallthrough
 - Complicated by indirect jumps (none in our ILOC!)



Static CFG Analysis

- Single block analysis is easy, and trees are too
- General CFGs are harder
 - Which branch of a conditional will execute?
 - How many times will a loop execute?
- How do we handle this?
 - One method: iterative data-flow analysis
 - Simulate all possible paths through a region of code
 - "Meet-over-all-paths" conservative solution
 - Meet operator combines information across paths

Semilattices

- In general, a semilattice is a set of values L, special values \top (top) and \perp (bottom), and a meet operator ^ such that
 - $-a \ge b$ iff $a \land b = b$
 - a > b iff $a \ge b$ and $a \ne b$
 - a ^ \top = a for all a \in L
 - $a \land \bot = \bot$ for all $a \in L$
- Partial ordering
 - Monotonic

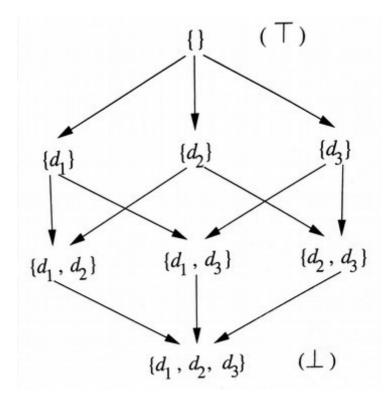
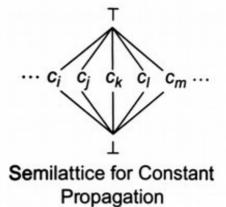


Figure 9.22 from Dragon book: semilattice of definitions using U (set union) as the meet operation

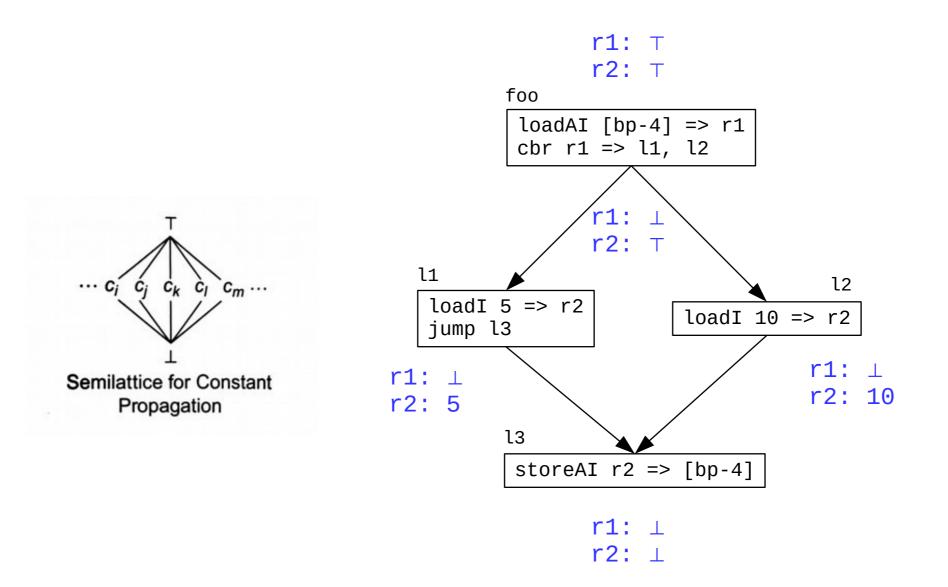
Constant propagation

- For sparse simple constant propagation (SSCP), the lattice is very shallow
 - $c_i^{n} = c_i^{n}$ for all c_i^{n}
 - $c_i^{\wedge} \perp = \perp$ for all c_i^{\vee}
 - $\mathbf{c}_{i} \wedge \mathbf{c}_{j} = \mathbf{c}_{i} \text{ if } \mathbf{c}_{i} = \mathbf{c}_{j}$
 - $c_i \wedge c_j = \perp \text{ if } c_i \neq c_j$



- Basically: each SSA value is either unknown (\top), a known constant (c_i), or it is a variable (\perp)
 - Initialize to unknown (\top) for all SSA values
 - Interpret operations over lattice values (always lowering)
 - Propagate information until convergence

Constant propagation example



Data-Flow Analysis

- Define properties of interest for basic blocks
 - Usually **sets** of blocks, variables, definitions, etc.
- Define a formula for how those properties change within a block
 - F(B) is based on F(A) where A is a predecessor or successor of B
 - This is basically the meet operator for a particular problem
- Specify initial information for all blocks
 - Entry/exit blocks usually have different values
- Run an iterative update algorithm to propagate changes
 - Keep running until the properties converge for all basic blocks
- Key concept: finite descending chain property
 - Properties must be monotonically increasing or decreasing
 - Otherwise, termination is not guaranteed

Data-Flow Analysis

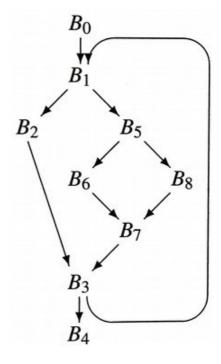
- This kind of algorithm is called a fixed-point algorithm
 - It runs until it converges to a "fixed point"
- Forward vs. backward data-flow analysis
 - Forward: along graph edges (based on predecessors)
 - Backward: reverse of forward (based on successors)
- Types of data-flow analysis
 - Constant propagation
 - Dominance
 - Liveness
 - Available expressions
 - Reaching definitions
 - Anticipable expressions

Dominance

- Block A dominates block B if A is on every path from the entry to B
 - Block A immediately dominates block B if there are no blocks between them
 - Block B postdominates block A if B is on every path from A to an exit
 - Every block both dominates and postdominates itself
- Simple dataflow analysis formulation
 - preds(b) is the set of blocks that are predecessors of block b
 - Dom(b) is the set of blocks that dominate block b
 - intersection of Dom for all immediate predecessors
 - *PostDom*(b) is the set of blocks that postdominate block b
 - (similar definition using succs(b))

Initial conditions: $Dom(entry) = \{entry\}\$ $\forall b \neq entry, Dom(b) = \{all blocks\}$

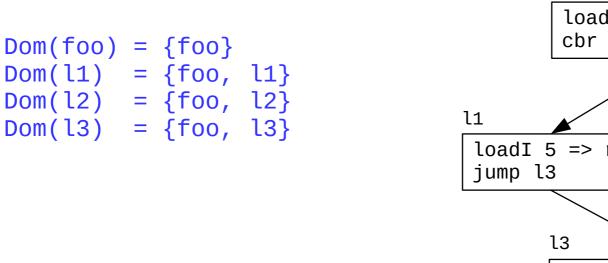
Updates:
$$Dom(b) = \{b\} \cup \bigcap_{p \in preds(b)} Dom(p)$$

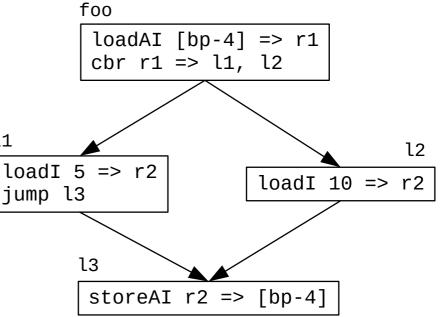


Dominance example

Initial conditions: $Dom(entry) = \{entry\}\$ $\forall b \neq entry, Dom(b) = \{all blocks\}$

Updates: $Dom(b) = \{b\} \cup \bigcap_{p \in preds(b)} Dom(p)$





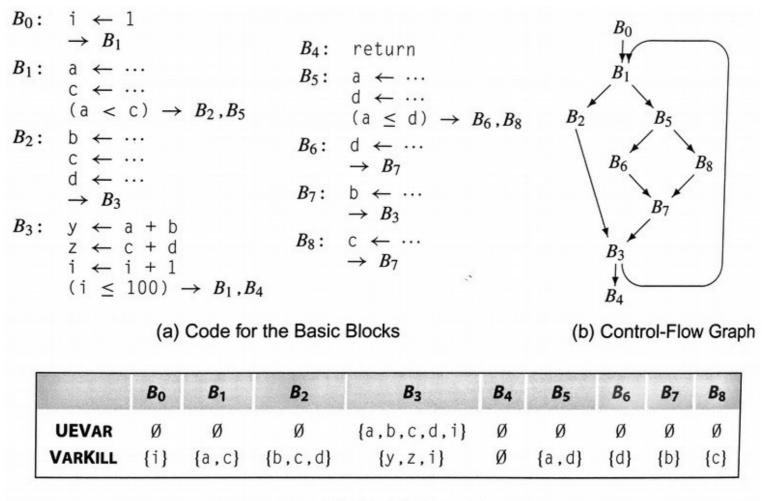
Liveness

- Variable v is live at point p if there is a path from p to a use of v with no intervening assignment to v
 - Useful for finding uninitialized variables (live at function entry)
 - Useful for optimization (remove unused assignments)
 - Useful for register allocation (keep live vars in registers)
- Initial information: *UEVar* and *VarKill*
 - UEVar(B): variables used in B before any redefinition in B
 - ("upwards exposed" variables)
 - VarKill(B): variables that are defined in B
- Textbook notation note: $X \cap \overline{Y} = X Y$

Initial conditions: $\forall b$, LiveOut $(b) = \emptyset$

Updates: $LiveOut(b) = \bigcup_{s \in succs(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s))$

Liveness example



(c) Initial Information

 $\forall b, LiveOut(b) = \emptyset$ $LiveOut(b) = \bigcup_{s \in succs(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s))$

Alternative definition

- Define LiveIn as well as LiveOut
 - Two formulas for each basic block
 - Makes things a bit simpler to reason about
 - Separates change *within* block from change *between* blocks

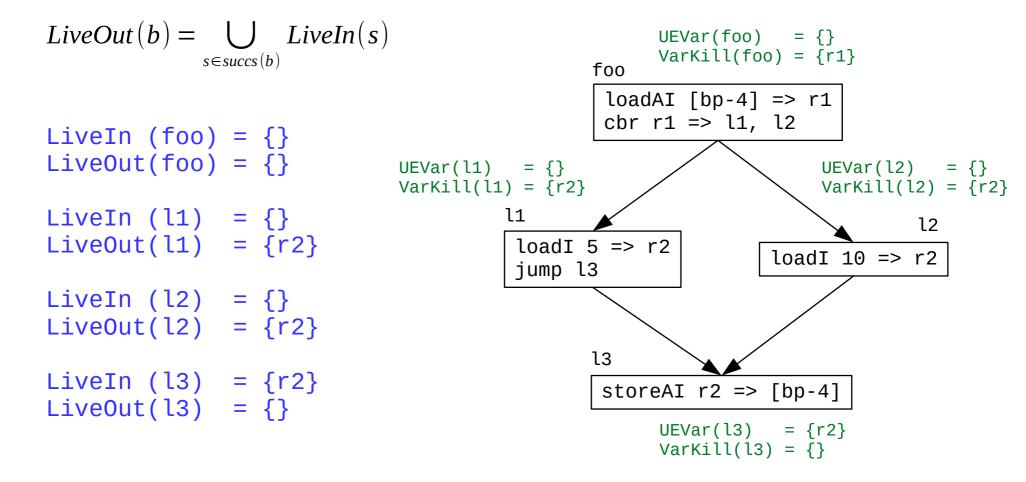
 $\forall b$, $LiveIn(b) = \emptyset$, $LiveOut(b) = \emptyset$

 $LiveIn(b) = UEVar(b) \cup (LiveOut(b) - VarKill(b))$ $LiveOut(b) = \bigcup_{s \in succs(b)} LiveIn(s)$

Liveness example

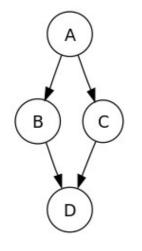
 $\forall b$, $LiveIn(b) = \emptyset$, $LiveOut(b) = \emptyset$

 $\mathit{LiveIn}(b) = \mathit{UEVar}(b) \cup (\mathit{LiveOut}(b) - \mathit{VarKill}(b))$



Block orderings

- Forwards dataflow analyses converge faster with reverse postorder processing of CFG blocks
 - Visit as many of a block's predecessors as possible before visiting that block
 - Strict reversal of normal postorder traversal
 - Similar to concept of topological sorting on DAGs
 - NOT EQUIVALENT to preorder traversal!
 - Backwards analyses should use reverse postorder on reverse CFG



Depth-first search:

A, B, D, B, A, C, A (left first) D, B, C, A (left first) A, C, D, C, A, B, A (right first)

Valid *postorderings*:

D, C, B, A (right first)

Valid *preorderings*:

A, B, D, C (left first) A, C, D, B (right first)

- Valid reverse postorderings:
- A, C, B, D A, B, C, D

Summary

 $Dom(entry) = \{entry\}$ $\forall b \neq entry, Dom(b) = \{all blocks\}$ $Dom(b) = \{b\} \cup \bigcap_{p \in preds(b)} Dom(p)$

Dominance

$$\forall b, \ LiveOut(b) = \emptyset$$

LiveOut(b) = $\bigcup_{s \in succs(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s))$
Liveness
(EAC version)

 $\forall b, LiveIn(b) = \emptyset, LiveOut(b) = \emptyset$ $LiveIn(b) = UEVar(b) \cup (LiveOut(b) - VarKill(b))$ $LiveOut(b) = \bigcup_{s \in succs(b)} LiveIn(s)$ (Dragon version)