

CS 432
Fall 2021

Mike Lam, Professor

Data-Flow Analysis

10111
00101
01110
10011

Compilers

int main() {
 int x
 = 4 + 5;
 return x;
}

Source code Tokens Syntax tree
Checked AST
+ Symtables

Lexing
(P2)

Parsing
(P3)

Analysis
(P4)

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

✓

✓ ✓

✓ ✓

main:
 loadI 4 => r1
 loadI 5 => r2
 add r1, r2 => r3
 i2i r3 => RET

Linear IR

main:
 loadI 4 => r1
 addI r1, 5 => RET

Optimized
Linear IR

IR Code Gen
(P5)

Optimization
Passes

Machine
Code Gen

Current
focus

Optimization

 int a;
 a = 0;
 while (a < 10) {
 a = a + 1;
 }

 loadI 0 => r1
 storeAI r1 => [bp-4]
l1:
 loadAI [bp-4] => r2
 loadI 10 => r3
 cmp_LT r2, r3 => r4
 cbr r4 => l2, l3
l2:
 loadAI [bp-4] => r5
 loadI 1 => r6
 add r5, r6 => r7
 storeAI r7 => [bp-4]
 jump l1
l3:

 loadI 0 => r1
 loadI 10 => r2
l1:
 cmp_LT r1, r2 => r4
 cbr r4 => l2, l3
l2:
 addI r1, 1 => r1
 jump l1
l3:
 storeAI r1 => [bp-4]

 loadI 10 => r1
 storeAI r1 => [bp-4]

Optimization is Hard

● Problem: it's hard to reason about all possible executions
– Preconditions and inputs may differ
– Optimizations should be correct and efficient in all cases

● Optimization tradeoff: investment vs. payoff
– "Better than naïve" is fairly easy
– "Optimal" is impossible
– Real world: somewhere in between

● Better speedups with more static analysis
● Usually worth the added compile time

● Also: linear IRs (e.g., ILOC) don't explicitly expose control flow
– This makes analysis and optimization difficult

Control-Flow Graphs

● Basic blocks
– "Maximal-length sequence of branch-free code"
– "Atomic" sequences (instructions that always execute together)

● Control-flow graph (CFG)
– Nodes/vertices for basic blocks
– Edges for control transfer

● Branch/jump instructions (explicit) or fallthrough (implicit)
● p is a predecessor of q if there is a path from p to q

– p is an immediate predecessor if there is an edge directly from p to q
● q is a successor of p if there is a path from p to q

– q is an immediate successor if there is an edge directly from p to q

Control-Flow Graphs

● Conversion: linear IR to CFG
– Find leaders (initial instruction of a basic block) and build blocks

● Every call or jump target is a leader

– Add edges between blocks based on jumps/branches and fallthrough
– Complicated by indirect jumps (none in our ILOC!)

foo:
 loadAI [bp-4] => r1
 cbr r1 => l1, l2
l1:
 loadI 5 => r2
 jump l3
l2:
 loadI 10 => r2
l3:
 storeAI r2 => [bp-4]

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2
jump l3

loadI 10 => r2

storeAI r2 => [bp-4]

foo

l1 l2

l3

Static CFG Analysis

● Single block analysis is easy, and trees are too
● General CFGs are harder

– Which branch of a conditional will execute?
– How many times will a loop execute?

● How do we handle this?
– One method: iterative data-flow analysis
– Simulate all possible paths through a region of code
– “Meet-over-all-paths” conservative solution
– Meet operator combines information across paths

Semilattices

● In general, a semilattice is a set of values L, special values
 (⊤ top) and (⊥ bottom), and a meet operator ^ such that

– a ≥ b iff a ^ b = b
– a > b iff a ≥ b and a ≠ b
– a ^ = a for all a L⊤ ∈

– a ^ = ⊥ ⊥ for all a L∈

● Partial ordering
– Monotonic

Figure 9.22 from Dragon book: semilattice of
definitions using U (set union) as the meet operation

Constant propagation

● For sparse simple constant propagation (SSCP), the lattice
is very shallow
– ci ^ = c⊤ i for all ci

– ci ^ = for all c⊥ ⊥ i

– ci ^ cj = ci if ci = cj

– ci ^ cj = if c⊥ i ≠ cj

● Basically: each SSA value is either unknown (), a known constant ⊤
(c

i
), or it is a variable ()⊥

– Initialize to unknown () for all SSA values⊤

– Interpret operations over lattice values (always lowering)
– Propagate information until convergence

Constant propagation example

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2
jump l3 loadI 10 => r2

storeAI r2 => [bp-4]

r1: ⊤
r2: ⊤

r1: ⊥
r2: ⊤

r1: ⊥
r2: 5

r1: ⊥
r2: 10

r1: ⊥
r2: ⊥

foo

l1 l2

l3

Data-Flow Analysis

● Define properties of interest for basic blocks
– Usually sets of blocks, variables, definitions, etc.

● Define a formula for how those properties change within a block
– F(B) is based on F(A) where A is a predecessor or successor of B
– This is basically the meet operator for a particular problem

● Specify initial information for all blocks
– Entry/exit blocks usually have different values

● Run an iterative update algorithm to propagate changes
– Keep running until the properties converge for all basic blocks

● Key concept: finite descending chain property
– Properties must be monotonically increasing or decreasing
– Otherwise, termination is not guaranteed

Data-Flow Analysis

● This kind of algorithm is called a fixed-point algorithm
– It runs until it converges to a “fixed point”

● Forward vs. backward data-flow analysis
– Forward: along graph edges (based on predecessors)
– Backward: reverse of forward (based on successors)

● Types of data-flow analysis
– Constant propagation
– Dominance
– Liveness
– Available expressions
– Reaching definitions
– Anticipable expressions

Dominance

● Block A dominates block B if A is on every path from the entry to B
– Block A immediately dominates block B if there are no blocks between them
– Block B postdominates block A if B is on every path from A to an exit
– Every block both dominates and postdominates itself

● Simple dataflow analysis formulation
– preds(b) is the set of blocks that are predecessors of block b
– Dom(b) is the set of blocks that dominate block b

● intersection of Dom for all immediate predecessors

– PostDom(b) is the set of blocks that postdominate block b
● (similar definition using succs(b))

Updates : Dom(b) = {b }∪ ∩
p∈ preds(b)

Dom (p)

Initial conditions : Dom(entry) = {entry }

∀ b≠entry , Dom (b) = {all blocks }

Dominance example

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2
jump l3

loadI 10 => r2

storeAI r2 => [bp-4]

Dom(foo) = {foo}
Dom(l1) = {foo, l1}
Dom(l2) = {foo, l2}
Dom(l3) = {foo, l3}

Updates : Dom(b) = {b }∪ ∩
p∈preds(b)

Dom(p)

Initial conditions : Dom(entry) = {entry }

∀ b≠entry , Dom(b) = {all blocks }

foo

l1 l2

l3

Liveness

● Variable v is live at point p if there is a path from p to a use of v with
no intervening assignment to v
– Useful for finding uninitialized variables (live at function entry)
– Useful for optimization (remove unused assignments)
– Useful for register allocation (keep live vars in registers)

● Initial information: UEVar and VarKill
– UEVar(B): variables used in B before any redefinition in B

● (“upwards exposed” variables)

– VarKill(B): variables that are defined in B
● Textbook notation note: X ∩ Y = X - Y

Updates : LiveOut (b) = ∪
s∈succs (b)

UEVar(s) ∪ (LiveOut (s) − VarKill(s))

Initial conditions : ∀ b, LiveOut (b) = ∅

Liveness example

LiveOut (b) = ∪
s∈succs (b)

UEVar(s) ∪ (LiveOut (s) − VarKill(s))∀ b, LiveOut (b) = ∅

Alternative definition

● Define LiveIn as well as LiveOut
– Two formulas for each basic block
– Makes things a bit simpler to reason about

● Separates change within block from change between blocks

LiveIn(b) = UEVar (b) ∪ (LiveOut (b) − VarKill (b))

LiveOut (b) = ∪
s∈succs (b)

LiveIn(s)

∀ b , LiveIn(b) = ∅ , LiveOut (b) = ∅

Liveness example

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2
jump l3

loadI 10 => r2

storeAI r2 => [bp-4]

LiveIn (foo) = {}
LiveOut(foo) = {}

LiveIn (l1) = {}
LiveOut(l1) = {r2}

LiveIn (l2) = {}
LiveOut(l2) = {r2}

LiveIn (l3) = {r2}
LiveOut(l3) = {}

foo

l1 l2

l3

LiveIn(b) = UEVar(b) ∪ (LiveOut (b) − VarKill(b))

LiveOut (b) = ∪
s∈succs (b)

LiveIn(s)

∀ b , LiveIn(b) = ∅ , LiveOut (b) = ∅

UEVar(foo) = {}
VarKill(foo) = {r1}

UEVar(l1) = {}
VarKill(l1) = {r2}

UEVar(l2) = {}
VarKill(l2) = {r2}

UEVar(l3) = {r2}
VarKill(l3) = {}

Block orderings

● Forwards dataflow analyses converge faster with reverse postorder
processing of CFG blocks
– Visit as many of a block’s predecessors as possible before visiting that block
– Strict reversal of normal postorder traversal
– Similar to concept of topological sorting on DAGs
– NOT EQUIVALENT to preorder traversal!
– Backwards analyses should use reverse postorder on reverse CFG

Valid preorderings:

A, B, D, C (left first)
A, C, D, B (right first)

Valid postorderings:

D, B, C, A (left first)
D, C, B, A (right first)

Valid reverse postorderings:

A, C, B, D
A, B, C, D

Depth-first search:

A, B, D, B, A, C, A (left first)
A, C, D, C, A, B, A (right first)

Summary

LiveIn(b) = UEVar(b) ∪ (LiveOut (b) − VarKill(b))

LiveOut (b) = ∪
s∈succs (b)

LiveIn(s)

LiveOut (b) = ∪
s∈succs(b)

UEVar (s) ∪ (LiveOut (s) − VarKill (s))

∀ b , LiveOut (b) = ∅

Dom(b) = {b }∪ ∩
p∈preds (b)

Dom(p)

Dom(entry) = {entry }

∀ b≠entry , Dom(b) = {all blocks } Dominance

Liveness
(EAC version)

Liveness
(Dragon version)

∀ b , LiveIn(b) = ∅ , LiveOut (b) = ∅

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

