

CS 432
Fall 2021

Mike Lam, Professor

Type Systems and the
Visitor Design Pattern

Γ
τ λ

public class WhileLoopCounter extends DefaultASTVisitor {
 private int numWhileLoops = 0;
 @Override
 public void preVisit(ASTWhileLoop node)
 {
 numWhileLoops++;
 }
 @Override
 public void postVisit(ASTProgram node)
 {
 System.out.println("Number of while loops = " +
 numWhileLoops);
 }
}

General theme

● Pattern matching over a tree is very useful in compilers
– Debug output (P2)
– Type checking & other static analysis (P3)
– Code generation (P4)
– Instruction selection

● Theory and practice
– Type systems describe correctly-typed program trees
– Visitor design pattern allows clean implementation in a non-

functional language
● Generalization of tree traversal (CS 240 approach)

Types

● A type is an abstract category characterizing a range
of data values
– Base types: integer, character, boolean, floating-point
– Enumerated types (finite list of constants)
– Pointer types (“address of X”)
– Array or list types (“list of X”)
– Compound/record types (named collections of other types)
– Function types: (type1, type2, type3) → type4

Not all of these will be necessary for Decaf

Type Systems

● A type system is a set of type rules
– Rules: valid types, type compatibility, and how values can be used
– A type judgment is an assertion that expression x has type t

● Written as “x : t” (e.g., “3 : int” and “true : bool”)
● Often requires the context of a type environment (i.e., symbol table)

– “Strongly typed” if every expression can be assigned an unambiguous type
– “Statically typed” if all types can be assigned at compile time
– “Dynamically typed” if some types can only be discovered at runtime

● Benefits of a robust type system
– Earlier error detection
– Better documentation
– Increased modularization

Formal Type Theory

● A formal type system is a set of type rules
– Each rule has a name, zero or more premises (above the line), and a conclusion

(below the line)
– Premises and conclusions are type judgments (A x : t⊢)
– “⊢:” is a ternary operator connecting type environments, expressions, and types
– Omit type for statements (“A s⊢ ” means “s is well-typed in environment A”)

Formal Type Theory

● Type proofs consist of composing multiple type rules
– Apply rule instances recursively to form proof trees
– Type environments (e.g., symbol tables) provide type context
– Proof structure is based on the AST structure (“syntax-directed”)
– Curry-Howard correspondence (“proofs as programs”)

A x = foo(y) + 1⊢

A = { foo : int → int, x : int, y : int }

A foo(y) + 1 : ⊢ int

A foo(y) : ⊢ int

A y : ⊢ int

TAssign

TDec

y : int A∊ TVar

TAdd

foo : (int)→int A∊

x : int A∊

A 1 : ⊢ int
TFuncCall

Formal Type Theory

● Is the following Decaf expression well-typed in the given
environment?
– If so, what is its type?

A = { x : int }

x + 4

BinaryOp (+)

Location (x) Literal (4)

AST:

Formal Type Theory

A x + 4 : ⊢

A x : ⊢ A 4 : ⊢ TAdd

x : int A∊TLoc TDec

A = { x : int }

intint

int

P3: Static Analysis

● Language and project specifications provide rules to check
at each type of AST node while traversing the AST
– E.g., at WhileLoop, make sure the conditional has a boolean type
– E.g., at BinaryOp, if it’s an add make sure both operands are

integers (or if it’s an equals make sure the operand types match)

P4: Static Analysis

● General idea: traverse AST and reject invalid programs
– Need to traverse the tree multiple times

● Print debug output
● Build symbol tables
● Perform type checking
● Later compiler passes

– We could write the tree traversal code every time, but that
would be tedious w/ a lot of code duplication

● Software engineering provides a better way in the form of the visitor
design pattern

A brief digression ...

● What are "design patterns"?

(remember them from CS 345?)

A brief digression ...

● What are "design patterns"?
– A reusable "template" or "pattern" that solves a

common design problem
● "Tried and true" solutions

– Main reference: Design Patterns: Elements of
Reusable Object-Oriented Software

● "Gang of Four:" Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides

(excerpt scanned as
PDF in Canvas)

Common Design Patterns

● Adapter – Converts one interface into another
● Factory – Allows clients to create objects without specifying a concrete class
● Flyweight – Manages large numbers of similar objects efficiently via sharing
● Iterator – Provides sequential access to a collection
● Monitor – Ensures mutually-exclusive access to member variables
● Null Object – Prevents null pointer dereferences by providing "default" object
● Observer – Track and update multiple dependents automatically on events
● Singleton – Provides global access to a single instance object
● Strategy – Encapsulate interchangeable algorithms
● Thread Pool – Manages allocation of available resources to queued tasks
● Visitor – Provides an iterator over a (usually recursive) structure

Design Patterns

● Pros
– Faster development
– More robust code (if implemented properly)
– More readable code (for those familiar with the patterns)
– Improved maintainability

● Cons
– Increased abstraction
– Increased complexity
– Philosophical: Suggests language deficiencies

● Consider a more appropriate language if many patterns are needed

Visitor Pattern

● Visitor design pattern: don't mix data and actions
– Separates the representation of an object structure from the

definition of operations on that structure
– Keeps data class definitions cleaner
– Allows the creation of new operations without modifying all data

classes
– Solves a general issue with most OO languages

● Lack of multiple dispatch (choosing a concrete method based on two
objects' data types)

– NOTE: This is stronger than single dispatch + overloading alone
● Less useful in functional languages with more robust pattern matching
● In C, we’ll handle this manually with function pointers

General Form

● Data: AbstractElement (ASTNode)
– ConcreteElement1 (Program)

– ConcreteElement2 (VarDecl)

– ConcreteElement3 (FuncDecl)

– (etc.)
– All elements define "Accept()" method that recursively calls "Accept()" on any

child nodes (this is the actual tree traversal code!)

● Actions: AbstractVisitor (NodeVisitor)
– ConcreteVisitor1 (PrintVisitor)

– ConcreteVisitor2 (SetParentVisitor)

– ConcreteVisitor3 (CalcDepthVisitor)

– (etc.)
– All visitors have "previsit_X()" and "postvisit_X()" methods for each

element type (i.e., AST node type)

Benefits

● Adding new operations is easy
– Just create a new concrete visitor
– In our compiler, create a new NodeVisitor struct

● No wasted space for state in data classes
– Just maintain state in the visitors (e.g, AnalysisData)

– In our compiler, we will make a few exceptions for state
that is shared across many visitors (e.g., symbol tables)

● These are stored as “attributes” in the AST

Drawbacks

● Adding new data classes is hard
– This won't matter for us, because our AST types are

dictated by the grammar and won't change
● Breaks encapsulation for data members

– Visitors often need access to all data members
– This is ok for us, because our data objects are just

structs anyway (all data is public)

Minor Modifications

● "Accept()" → "traverse()"

● "Visit()" → "previsit_X()" and "postvisit_X()"
– previsit_X() allows preorder operations

– postvisit_X() allows postorder operations

– Also, a single inorder method: invisit_binaryop()

● NodeVisitor struct
– Function pointers for all visitor methods

● CS 430 note: this is a manual implementation of virtual method tables!

– No type checking – be careful when building the struct!
– NULL pointers for unneeded methods

– Allows subclasses to define only the relevant visit methods

Visitor example

typedef struct {
 int loop_count;
} CountLoopsData;

#define DATA ((CountLoopsData*)(visitor->data))

void CountLoopsVisitor_previsit_program
(NodeVisitor* visitor, ASTNode* node)

{
 DATA->loop_count = 0;
}

void CountLoopsVisitor_previsit_whileloop
(NodeVisitor* visitor, ASTNode* node)

{
 DATA->loop_count++;
}

void CountLoopsVisitor_postvisit_program
(NodeVisitor* visitor, ASTNode* node)

{
 printf("%d\n", DATA->loop_count);
}

Visitor example

NodeVisitor* CountLoopsVisitor_new ()
{
 NodeVisitor* v = NodeVisitor_new();
 v->data = malloc(sizeof(CountLoopsData));
 v->dtor = free;
 v->previsit_program = CountLoopsVisitor_previsit_program;
 v->previsit_whileloop = CountLoopsVisitor_previsit_whileloop;
 v->postvisit_program = CountLoopsVisitor_postvisit_program;
 return v;
}

In main.c:

 NodeVisitor_traverse_and_free(CountLoopsVisitor_new(), tree);

Decaf Project

● Project 2 (parser)
– NodeVisitor (blank)

– PrintVisitor

– GenerateASTGraph

– SetParentVisitor

– CalcDepthVisitor

● Project 3 (analysis)
– PrintSymbolsVisitor

– BuildSymbolTablesVisitor

– Your static analysis (custom NodeVisitor)

● Project 4 (code gen)
– Your code generator (custom NodeVisitor)

Object-oriented implementation

● Dispatch
– Static dispatch: all method calls can be resolved at compile time
– Dynamic dispatch: polymorphic method calls resolved at run time
– Single vs. multiple dispatch (one object’s type vs. multiple objects’ type)

● Class instance record
– List of member variables for objects w/ vtable pointer
– Subclass CIR is a copy of the parents' with (potentially) added fields

● Virtual method table (vtable)
– List of methods w/ pointers to implementations

vtable ptr

x : int

foo

bar

Parent::foo

Child::bar

Heap Static Code Section

class instance record virtual method table

Object-oriented implementation

public class A {
public int x, y;
public void draw() { … }
public int area() { … }

}

a = new A();

vtable ptr

x : int

y : int

a draw

area

A::draw

A::area

Heap Static Code Section

class instance record

virtual method table

public class B extends A {
public int z;
public void draw() { … }
public void sift() { … }

}

b = new B();

vtable ptr

x : int

y : int

b draw

area

B::draw

B::sift

sift

z : int Dynamic dispatch!

A

B

Single vs. Multiple Dispatch

class A {
public void foo(A a) { System.out.println("A::foo(A)"); }
public void foo(B b) { System.out.println("A::foo(B)"); }

}

class B extends A {
public void foo(A a) { System.out.println("B::foo(A)"); }
public void foo(B b) { System.out.println("B::foo(B)"); }

}

A a1 = new A();
B b1 = new B();
A a2 = b1;

SINGLE DISPATCH MULTIPLE DISPATCH
a1.foo(a1); A::foo(A) A::foo(A)
b1.foo(a1); B::foo(A) B::foo(A)
a1.foo(b1); A::foo(B) A::foo(B)
b1.foo(b1); B::foo(B) B::foo(B)
a1.foo(a2); A::foo(A) A::foo(B)
b1.foo(a2); B::foo(A) B::foo(B)
a2.foo(a2); B::foo(A) B::foo(B)

(Java-like Code)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

