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public class WhileLoopCounter extends DefaultASTVisitor {
    private int numWhileLoops = 0;
    @Override
    public void preVisit(ASTWhileLoop node)
    {
        numWhileLoops++;
    }
    @Override
    public void postVisit(ASTProgram node)
    {
        System.out.println("Number of while loops = " +
                numWhileLoops);
    }
}



  

General theme

● Pattern matching over a tree is very useful in compilers
– Debug output (P2)
– Type checking & other static analysis (P3)
– Code generation (P4)
– Instruction selection

● Theory and practice
– Type systems describe correctly-typed program trees
– Visitor design pattern allows clean implementation in a non-

functional language
● Generalization of tree traversal (CS 240 approach)



  

Types

● A type is an abstract category characterizing a range 
of data values
– Base types: integer, character, boolean, floating-point
– Enumerated types (finite list of constants)
– Pointer types (“address of X”)
– Array or list types (“list of X”)
– Compound/record types (named collections of other types)
– Function types: (type1, type2, type3) → type4

Not all of these will be necessary for Decaf



  

Type Systems

● A type system is a set of type rules
– Rules: valid types, type compatibility, and how values can be used
– A type judgment is an assertion that expression x has type t

● Written as “x : t” (e.g., “3 : int” and “true : bool”)
● Often requires the context of a type environment (i.e., symbol table)

– “Strongly typed” if every expression can be assigned an unambiguous type
– “Statically typed” if all types can be assigned at compile time
– “Dynamically typed” if some types can only be discovered at runtime

● Benefits of a robust type system
– Earlier error detection
– Better documentation
– Increased modularization



  

Formal Type Theory

● A formal type system is a set of type rules
– Each rule has a name, zero or more premises (above the line), and a conclusion 

(below the line)
– Premises and conclusions are type judgments (A  x : t⊢ )
– “⊢:” is a ternary operator connecting type environments, expressions, and types
– Omit type for statements (“A  s⊢ ” means “s is well-typed in environment A”)



  

Formal Type Theory

● Type proofs consist of composing multiple type rules
– Apply rule instances recursively to form proof trees
– Type environments (e.g., symbol tables) provide type context
– Proof structure is based on the AST structure (“syntax-directed”)
– Curry-Howard correspondence (“proofs as programs”)

A   x = foo(y) + 1⊢

A = { foo : int → int, x : int, y : int }

A   foo(y) + 1 : ⊢ int

A   foo(y) : ⊢ int

A   y : ⊢ int

TAssign

TDec

y : int  A∊ TVar

TAdd

foo : (int)→int  A∊

x : int  A∊

A   1 : ⊢ int
TFuncCall



  

Formal Type Theory

● Is the following Decaf expression well-typed in the given 
environment?
– If so, what is its type?

A = { x : int }

x + 4

BinaryOp (+)

Location (x) Literal (4)

AST:



  

Formal Type Theory

A   x + 4 : ⊢    

A   x : ⊢    A   4 : ⊢    TAdd

x : int  A∊TLoc TDec

A = { x : int }

intint

int



  

P3: Static Analysis

● Language and project specifications provide rules to check 
at each type of AST node while traversing the AST
– E.g., at WhileLoop, make sure the conditional has a boolean type
– E.g., at BinaryOp, if it’s an add make sure both operands are 

integers (or if it’s an equals make sure the operand types match)



  

P4: Static Analysis

● General idea: traverse AST and reject invalid programs
– Need to traverse the tree multiple times

● Print debug output
● Build symbol tables
● Perform type checking
● Later compiler passes

– We could write the tree traversal code every time, but that 
would be tedious w/ a lot of code duplication

● Software engineering provides a better way in the form of the visitor 
design pattern



  

A brief digression ...

● What are "design patterns"?

(remember them from CS 345?)



  

A brief digression ...

● What are "design patterns"?
– A reusable "template" or "pattern" that solves a 

common design problem
● "Tried and true" solutions

– Main reference: Design Patterns: Elements of 
Reusable Object-Oriented Software

● "Gang of Four:" Erich Gamma, Richard Helm, Ralph 
Johnson, and John Vlissides

(excerpt scanned as 
PDF in Canvas)



  

Common Design Patterns

● Adapter – Converts one interface into another
● Factory – Allows clients to create objects without specifying a concrete class
● Flyweight – Manages large numbers of similar objects efficiently via sharing
● Iterator – Provides sequential access to a collection
● Monitor – Ensures mutually-exclusive access to member variables
● Null Object – Prevents null pointer dereferences by providing "default" object
● Observer – Track and update multiple dependents automatically on events
● Singleton – Provides global access to a single instance object
● Strategy – Encapsulate interchangeable algorithms
● Thread Pool – Manages allocation of available resources to queued tasks
● Visitor – Provides an iterator over a (usually recursive) structure



  

Design Patterns

● Pros
– Faster development
– More robust code (if implemented properly)
– More readable code (for those familiar with the patterns)
– Improved maintainability

● Cons
– Increased abstraction
– Increased complexity
– Philosophical: Suggests language deficiencies

● Consider a more appropriate language if many patterns are needed



  

Visitor Pattern

● Visitor design pattern: don't mix data and actions
– Separates the representation of an object structure from the 

definition of operations on that structure
– Keeps data class definitions cleaner
– Allows the creation of new operations without modifying all data 

classes
– Solves a general issue with most OO languages

● Lack of multiple dispatch (choosing a concrete method based on two 
objects' data types)

– NOTE: This is stronger than single dispatch + overloading alone
● Less useful in functional languages with more robust pattern matching
● In C, we’ll handle this manually with function pointers



  

General Form

● Data: AbstractElement (ASTNode)
– ConcreteElement1 (Program)

– ConcreteElement2 (VarDecl)

– ConcreteElement3 (FuncDecl)

– (etc.)
– All elements define "Accept()" method that recursively calls "Accept()" on any 

child nodes (this is the actual tree traversal code!)

● Actions: AbstractVisitor (NodeVisitor)
– ConcreteVisitor1 (PrintVisitor)

– ConcreteVisitor2 (SetParentVisitor)

– ConcreteVisitor3 (CalcDepthVisitor)

– (etc.)
– All visitors have "previsit_X()" and "postvisit_X()" methods for each 

element type (i.e., AST node type)



  

Benefits

● Adding new operations is easy
– Just create a new concrete visitor
– In our compiler, create a new NodeVisitor struct

● No wasted space for state in data classes
– Just maintain state in the visitors (e.g, AnalysisData)

– In our compiler, we will make a few exceptions for state 
that is shared across many visitors (e.g., symbol tables)

● These are stored as “attributes” in the AST



  

Drawbacks

● Adding new data classes is hard
– This won't matter for us, because our AST types are 

dictated by the grammar and won't change
● Breaks encapsulation for data members

– Visitors often need access to all data members
– This is ok for us, because our data objects are just 

structs anyway (all data is public)



  

Minor Modifications

● "Accept()" → "traverse()"

● "Visit()" → "previsit_X()" and "postvisit_X()"
– previsit_X() allows preorder operations

– postvisit_X() allows postorder operations

– Also, a single inorder method: invisit_binaryop()

● NodeVisitor struct
– Function pointers for all visitor methods

● CS 430 note: this is a manual implementation of virtual method tables!

– No type checking – be careful when building the struct!
– NULL pointers for unneeded methods

– Allows subclasses to define only the relevant visit methods



  

Visitor example

typedef struct {
    int loop_count;
} CountLoopsData;

#define DATA ((CountLoopsData*)(visitor->data))

void CountLoopsVisitor_previsit_program
(NodeVisitor* visitor, ASTNode* node)

{
    DATA->loop_count = 0;
}

void CountLoopsVisitor_previsit_whileloop
(NodeVisitor* visitor, ASTNode* node)

{
    DATA->loop_count++;
}

void CountLoopsVisitor_postvisit_program
(NodeVisitor* visitor, ASTNode* node)

{
    printf("%d\n", DATA->loop_count);
}



  

Visitor example

NodeVisitor* CountLoopsVisitor_new ()
{
    NodeVisitor* v = NodeVisitor_new();
    v->data = malloc(sizeof(CountLoopsData));
    v->dtor = free;
    v->previsit_program   = CountLoopsVisitor_previsit_program;
    v->previsit_whileloop = CountLoopsVisitor_previsit_whileloop;
    v->postvisit_program  = CountLoopsVisitor_postvisit_program;
    return v;
}

In main.c:

    NodeVisitor_traverse_and_free(CountLoopsVisitor_new(), tree);



  

Decaf Project

● Project 2 (parser)
– NodeVisitor (blank)

– PrintVisitor

– GenerateASTGraph

– SetParentVisitor

– CalcDepthVisitor

● Project 3 (analysis)
– PrintSymbolsVisitor

– BuildSymbolTablesVisitor

– Your static analysis (custom NodeVisitor)

● Project 4 (code gen)
– Your code generator (custom NodeVisitor)



  

Object-oriented implementation

● Dispatch
– Static dispatch: all method calls can be resolved at compile time
– Dynamic dispatch: polymorphic method calls resolved at run time
– Single vs. multiple dispatch (one object’s type vs. multiple objects’ type)

● Class instance record
– List of member variables for objects w/ vtable pointer
– Subclass CIR is a copy of the parents' with (potentially) added fields

● Virtual method table (vtable)
– List of methods w/ pointers to implementations

vtable ptr

x : int

foo

bar

Parent::foo

Child::bar

Heap Static Code Section

class instance record virtual method table



  

Object-oriented implementation

public class A {
public int x, y;
public void draw() { … }
public int area() { … }

}

a = new A();

vtable ptr

x : int

y : int

a draw

area

A::draw

A::area

Heap Static Code Section

class instance record

virtual method table

public class B extends A {
public int z;
public void draw() { … }
public void sift() { … }

}

b = new B();

vtable ptr

x : int

y : int

b draw

area

B::draw

B::sift

sift

z : int Dynamic dispatch!

A

B



  

Single vs. Multiple Dispatch

class A {
public void foo(A a) { System.out.println("A::foo(A)"); }
public void foo(B b) { System.out.println("A::foo(B)"); }

}

class B extends A {
public void foo(A a) { System.out.println("B::foo(A)"); }
public void foo(B b) { System.out.println("B::foo(B)"); }

}

A a1 = new A();
B b1 = new B();
A a2 = b1;

SINGLE DISPATCH MULTIPLE DISPATCH
a1.foo(a1); A::foo(A) A::foo(A)
b1.foo(a1); B::foo(A) B::foo(A)
a1.foo(b1); A::foo(B) A::foo(B)
b1.foo(b1); B::foo(B) B::foo(B)
a1.foo(a2); A::foo(A) A::foo(B)
b1.foo(a2); B::foo(A) B::foo(B)
a2.foo(a2); B::foo(A) B::foo(B)

(Java-like Code)
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