AN UNMATCHED LEFT PARENTHESIS
CS 432 ERERTESHNLNRESOL\.’ED TENSION

Fa” 2021 THAT WILL STRY WITH YOU ALL DAY.

https://xkcd.com/859/

Mike Lam, Professor

Bottom-Up (LR) Parsing

Current " "
focus Back end

-
. / S \
~
- ~

Source code ~"Tokens Syntax tree ™. Machine code

"Front end"

I Overview

* Two general parsing approaches

- Top-down: begin with start symbol (root of parse tree), and
gradually expand non-terminals

- Bottom-up: begin with terminals (leaves of parse tree), and
gradually connect using non-terminals

A
T~
V = E
S
Top-down <'|:1 E + E Bottom-up
V V

I Shift-Reduce Parsing

* Top-down (LL) parsers

- Left-to-right scan, Leftmost derivation

- Recursive routines, one per non-terminal (recursive descent)
— Implicit stack (system call stack)

- Requires more restrictive grammars

— Simpler to understand and possible to hand-code

* Bottom-up (LR) parsers

- Left-to-right scan, (reverse) Rightmost derivation

- "Shift"/push terminals and non-terminals onto a stack

- "Reduce"/pop to replace handles with non-terminals

— Less restrictive grammars

- Harder to understand and nearly always auto-generated
- Very efficient

I Shift-Reduce Parsing

. e V=FE
- shift 'a’ - shift '+
¢ a e V=FE +
- reduce (V - a) - shift'c'
eV *V=E+CC
- shift '=' - reduce (V - ©)
o« \/ = cV=E+V
- shift 'b’ - reduce (E - E+V)
V=D *V=E
- reduce (V - b) - reduce (A - V=E)
e V=V e A
- reduce (E - V) — accept

(handles are underlined)

shift = push, reduce = popN

V =
|
a
V
A -V =E
E - E +V
| V
V - a |

I LR Parsing

* LR(1) grammars and parsers

- Left-to-right scan of the input string
- Rightmost derivation
- 1 symbol of lookahead

- Less restricted form of context-free grammar

* Support for most language features
* Efficient parsing

Context-Free
Hierarchy

Context-Free

LR(1)

LL(1)

Regular

I LR Parser Variants

LR (k) — multiple lookaheads (not necessary)

LR(1) — single lookahead (EAC covers this!)
- Very general and very powerful

- Lots of item sets; tedious to construct by hand
— Overkill for most practical languages

LALR(1) — special case of LR(1) that merges some states

- Less powerful, but easier to manage
SLR(1) — special case of LR(1) w/o explicit lookahead (Dragon book covers this!)
- Uses FOLLOW sets to disambiguate

— Even less powerful, but much easier to understand

— Slightly counterintuitive: all LR(1) languages have SLR(1) grammars

* So SLR(1) is sufficiently general for our purposes
* Use LR(0) item sets and generate SLR(1) ACTION/GOTO tables

LR(0) — no lookahead
- Severely restricted; most "interesting" grammars aren't LR(0)

I LR Parsing

* Creating an LR parser (pushdown automaton)

— Build item sets from grammar productions

* Anitem uses a dot () to represent parser status: "A -~ a+ S b"

- Dots on the left end: "possibilities”
— Dots in the middle: "partially-complete”
— Dots on the right end: "complete”

* |tem sets represent multiple parser states (build by taking closure)
— Similar to NFA state collections in subset construction

— Build ACTION / GOTO tables

* Encodes stack and transition decisions (like o in FA)
 ACTION(state, terminal) = { shift/push, reduce/pop, accept }
 GOTO(state, non-terminal) = state

I LR(0) Item Sets

* LR(0) item sets and automaton

Start with an item representing “S” or “S’ - «S”

e The latter is an augmented grammar
* The Dragon book uses it; the online tool doesn’t

Take the closure to add more states if the dot lies
immediately to the left of a non-terminal

* (Non-kernel items, denoted here in blue)
Form new sets by “moving the dot” (and take the closure)

Convert to finite automaton for recognizing handles by
adding transitions

* Each set becomes a state
* “Moving the dot” = state transition + stack push

0 | s " s
*S
S—=+aSh a
S—e+ab &. m 3 b 5
2 S o S—aSsb | s—asbe
S—aesb
S—a-+b b y
S eash | M 4
S—eab S—abe

I SLR(1) Tables

e Create ACTION and GOTO tables

- For each item set i

e Ifanitem matches A - Becy

— ACTION(i, c) = "shift" to corresponding item set ("move the dot")
e If an item matches A - 3

- ACTION(, x) = "reduce A - (" for all x in FOLLOW(A) (“backtrack in FA”)
e Ifanitem matches A -~ BBy

- GOTO(i, B) = corresponding item set ("move the dot")

- ACTION({S °}, $) = "accept"
- Any empty ACTION entry = “error” (usually left blank)

I SLR(1) Parsing

e Push state O onto the stack

* Repeat until next action is accept or error:

— Look up next action in ACTION table
* Row is the current state (top of stack)

toput [ar [Jar [Jan 8]
\

LR

e Column is the next input (terminal or $) Smih o Pauitiy . i @it
. . . S Program
- If action is shift(s): 7\
$
 Push state s onto stack ACTION | GOTO

* Consume one token from input
- If action is reduce(A - B):

Figure 4.35: Model of an LR parser

* Pop one state for each terminal or non-terminal in 3

e Look up next state in GOTO table and push it onto the stack
- Row is the current state (top of stack, after popping)
— Column is A (newly-reduced non-terminal)

ACTION GOTO
S b State a b S
a' 0 shift(2) 1
a b 1 accept
2 shift(2) shaft(4d) 3
3 shifk(5)
4 reduce(§ —ap) reduce(S — ab)
3 reduce(§ — a Sb) reduce(S — a Sp)
1 FOLLOW(S) ={b, $}
.S
S—e+asSh d
2
S S—aS+b S—aShbs
S—a+*Sh 7
S—a-*b b
S—eash | M 4
S—=+ab S—abe

Parsing for “a a b b":

2]
+
Q
o0
=

-e AR AR R R R
oNoNONONONONC
R NNNNDN

WWNDN
o1

H

Symbols

OuumoY oD
@y

R aPREPREBHR
(@x

Vo 29299 9 9D

Input

L D

S OTOCT
ST T TOT
hhLhPhPhrR

a

ACTION GOTO

shift(2)

shift(2)

accept
shift(4) 3
shift(3)
reduce(¥ — ab) reduce(S — ab)

reduce(¥ — a Sp) reduce(S — a Sb)

Action

shift(2)

shift(2)

shift(4)

reduce(S - a b)
shift(5)

reduce(S - a S b)
accept

I LR Conflicts

 Shift/reduce
— Can be resolved by always shifting or by grammar modification

* Reduce/reduce
- Requires grammar modification to fix

A ->V = E A -> X A X
E->E + V A ->
E ->V Shift/reduce conflict (all LR)
V->a | b | c
Shift/reduce conflict in LR(0) A->B | C

B -> X

C -> X

Observation: none of these languages are LL(1) either! Reduce/reduce conflict (all LR)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

