CS 432 Fall 2021

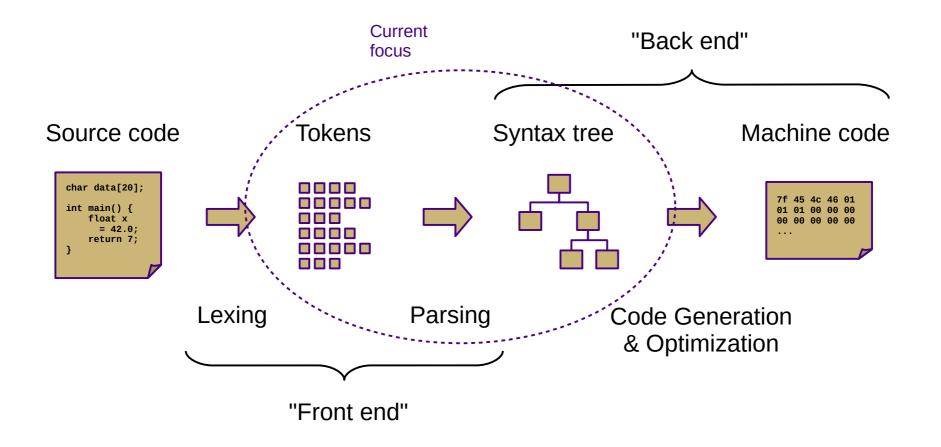
recursion

See recursion.

Mike Lam, Professor

Top-Down (LL) Parsing

Compilation

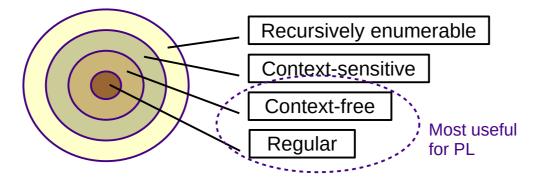


Review

- Recognize regular languages with finite automata
 - Described by regular expressions
 - Rule-based transitions, no memory required
- Recognize context-free languages with pushdown automata
 - Described by context-free grammars
 - Rule-based transitions, MEMORY REQUIRED
 - Add a stack!

KEY OBSERVATION: Allowing the translator to use memory to track parse state information enables a wider range of automated machine translation.

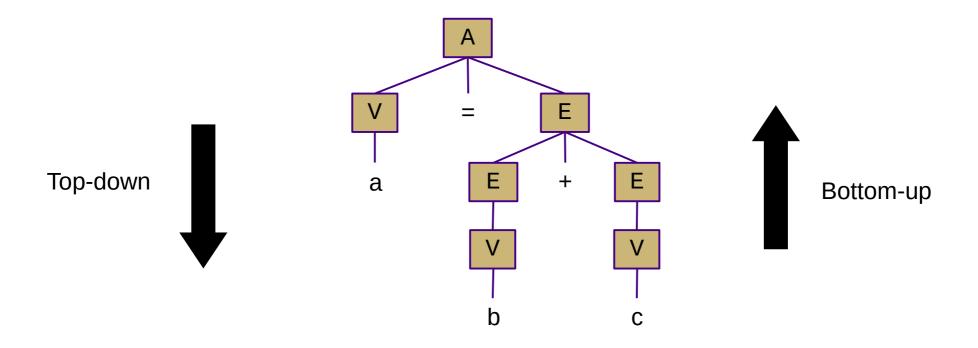
Chomsky Hierarchy of Languages



Grammar	Languages	Automaton	Production rules (constraints)
Type-0	Recursively enumerable	Turing machine	lpha ightarrow eta (no restrictions)
Type-1	Context-sensitive	Linear-bounded non-deterministic Turing machine	$lpha Aeta o lpha \gammaeta$
Type-2	Context-free	Non-deterministic pushdown automaton	$A ightarrow \gamma$
Туре-З	Regular	Finite state automaton	$egin{array}{c} A ightarrow a \ { m and} \ A ightarrow a B \end{array}$

Parsing Approaches

- Top-down: begin with start symbol (root of parse tree), and gradually expand non-terminals
 - Stack contains leaves that still need to be expanded
- Bottom-up: begin with terminals (leaves of parse tree), and gradually connect using non-terminals
 - Stack contains roots of subtrees that still need to be connected



Top-Down Parsing

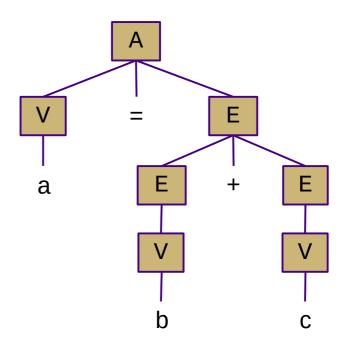
```
root = createNode(S)
focus = root
push(null)
token = nextToken()
loop:
    if (focus is non-terminal):
        B = chooseRuleAndExpand(focus)
        for each b in B.reverse():
        focus.addChild(createNode(b))
        push(b)
```

```
focus = pop()
else if (token == focus):
   token = nextToken()
```

```
focus = pop()
```

```
else if (token == EOF and focus == null):
    return root
```

else: exit(ERROR)



Recursive Descent Parsing

- Idea: use the system stack rather than an explicit stack
 - One function for each non-terminal
 - Encode productions with function calls and token checks
 - Use recursion to track current "state" of the parse
 - Easiest kind of parser to write manually

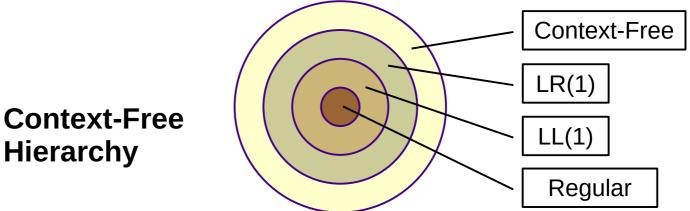
```
parseA(tokens):
A \rightarrow \text{'if'} C \text{'then'} S
                                            node = new A()
  'goto' L
                                            next = tokens.next()
                                            if next == "if":
                                                 node.type = IFTHEN
                                                 node.cond = parseC()
                                                 matchToken("then")
class A {
                                                 node.stmt = parseS()
    enum Type
                                            else if next == "goto"
        { IFTHEN, GOTO }
                                                 node.type = GOTO
    Type type
                                                 node.lbl = parseL()
    C cond
    S stmt
                                            else
                                                 error ("expected 'if' or 'goto'")
    L 1b1
}
                                            return node
```

Top-Down Parsing

- Main issue: choosing which rule to use
 - With full lookahead, it would be relatively easy
 - This would be very inefficient
 - Can we do it with a single lookahead?
 - That would be much faster
 - Must be careful to avoid backtracking

LL(1) Parsing

- <u>LL(1)</u> grammars and parsers
 - Left-to-right scan of the input string
 - Leftmost derivation
 - **<u>1</u> symbol** of lookahead
 - Highly restricted form of context-free grammar
 - No left recursion
 - No backtracking



LL(1) Grammars

- We can convert many grammars to be LL(1)
 - Must remove left recursion
 - Must remove common prefixes (i.e., left factoring)
 - Easy (relatively) to hand-write a parser
 - Practical solution to real-world translation problems

$$\begin{array}{ccccc} A \rightarrow A & \alpha & & & & A \rightarrow \alpha & \beta_1 \\ & & & & \beta_2 & & & & & & & & & \\ \end{array}$$

Grammar with left recursion

Grammar with common prefixes

Eliminating Left Recursion

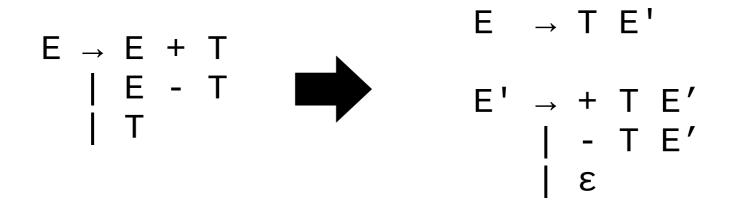
- Left recursion: A \rightarrow A α | β
 - Often a result of left associativity (e.g., expression grammar)
 - Leads to infinite looping/recursion in a top-down parser
 - To fix, unroll the recursion into a new non-terminal
 - Practical note (P2): A and A' can be a single function in your code
 - Parse one $\beta,$ then continue parsing $\alpha {}^{\prime}s$ until there are no more
 - Keep adding the previous parse tree as a left subnode of the new parse tree

Left Factoring

- Common prefix: $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \dots$
 - Leads to ambiguous rule choice in a top-down parser
 - One lookahead (α) is not enough to pick a rule; backtracking is required
 - To fix, left factor the choices into a new non-terminal
 - Practical note (P2): A and A' can be a single function in your code
 - Parse and save data about α in temporary variables until you have enough information to choose

Examples

• Eliminating left recursion:



fi

• Left factoring:

$$C \rightarrow if E B else B fi$$

| if E B fi $C' \rightarrow if E B C'$
C' $\rightarrow else B fi$

LL(1) Parsing

- LL(1) parsers can also be auto-generated
 - Similar to auto-generated lexers
 - Tables created by a *parser generator* using FIRST and FOLLOW helper sets
 - These sets are also useful when building hand-written recursive descent parsers
 - And (as we'll see next week), when building SLR parsers

LL(1) Parsing

- FIRST(α)
 - Set of terminals (or ϵ) that can appear at the start of a sentence derived from α (a terminal or non-terminal)
- FOLLOW(A) set
 - Set of terminals (or \$) that can occur immediately after nonterminal A in a sentential form
- FIRST⁺(A \rightarrow β)
 - If ε is not in FIRST(β)
 - FIRST⁺(A) = FIRST(β)
 - Otherwise
 - FIRST⁺(A) = FIRST(β) \cup FOLLOW(A)

Useful for choosing which rule to apply when expanding a non-terminal

Calculating FIRST(α)

- Rule 1: α is a terminal **a**
 - FIRST(a) = { a }
- Rule 2: α is a non-terminal X
 - Examine all productions $X \rightarrow Y_1 Y_2 \dots Y_k$
 - add FIRST(Y_1) if not $Y_1 \rightarrow \varepsilon$
 - add FIRST(Y_i) if $Y_1 \dots Y_j \rightarrow \varepsilon$, where j = i-1 (i.e., skip disappearing symbols)
 - FIRST(X) is union of all of the above
- Rule 3: α is a non-terminal X and X $\rightarrow \epsilon$
 - FIRST(X) includes ε

Calculating FOLLOW(B)

- Rule 1: FOLLOW(S) includes EOF / \$
 - Where S is the start symbol
- Rule 2: for every production A $\rightarrow \alpha B \beta$
 - FOLLOW(B) includes everything in FIRST(β) except ε
- Rule 3: if A $\rightarrow \alpha$ B or (A $\rightarrow \alpha$ B β and FIRST(β) contains ϵ)
 - FOLLOW(B) includes everything in FOLLOW(A)

Example

FIRST and FOLLOW sets:

$$\begin{array}{ccccccc} A & \rightarrow & X & A & X \\ & & & & Y & B & Y \\ B & \rightarrow & C & m \\ & & & C & m \end{array}$$

FIRST(A) = { x , y } FIRST(B) = { t } FIRST(C) = { t } FIRST⁺(A \rightarrow x A x) = { x } FIRST⁺(A \rightarrow y B y) = { y } (disjoint: this is ok)

FIRST⁺(B \rightarrow C m) = { t } FIRST⁺(B \rightarrow C) = { t } (not disjoint: requires backtracking!)

FOLLOW(A) = { x, \$ } FOLLOW(B) = { y } FOLLOW(C) = { y, m }

Aside: abstract syntax trees

Grammar:

$$A \rightarrow V = E ;$$

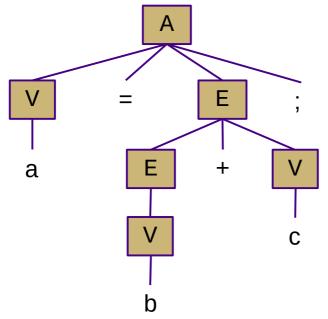
$$E \rightarrow E + V$$

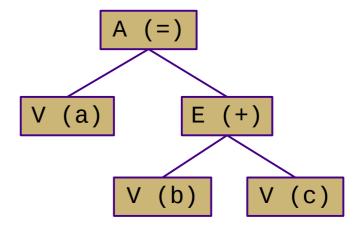
$$| V$$

$$V \rightarrow a | b | c$$

Parse tree:

Abstract syntax tree:





In P2, you will build an AST, not a parse tree!

Aside: Parser combinators

- A parser combinator is a higher-order function for parsing
 - Takes several parsers as inputs, returns new parser as output
 - Allows parser code to be very close to grammar
 - (Relatively) recent development: '90s and '00s
 - Example: Parsec in Haskell

```
whileStmt :: Parser Stmt
whileStmt =
    do keyword "while"
        cond <- expression
        keyword "do"
        stmt <- statement
        return (While cond stmt)</pre>
```

```
assignStmt :: Parser Stmt
assignStmt =
   do var <- identifier
      operator ":="
      expr <- expression
      return (Assign var expr)</pre>
```