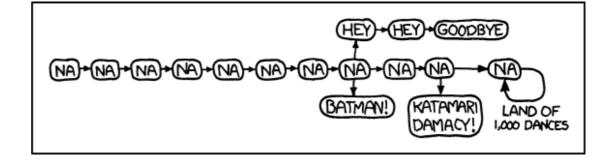
CS 432 Fall 2021



Mike Lam, Professor

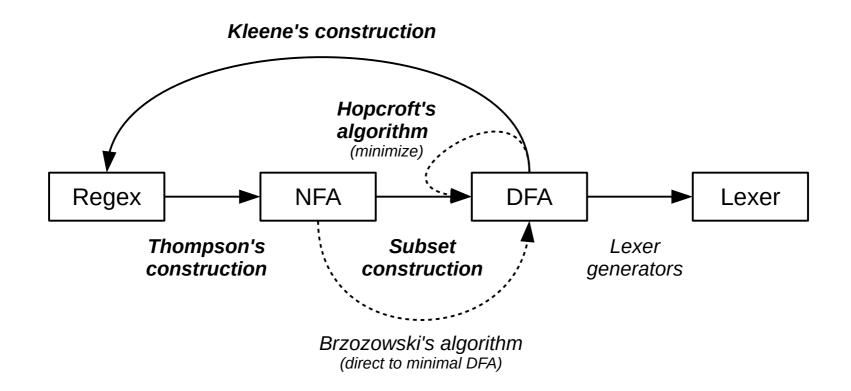
Finite Automata Conversions and Lexing

Finite Automata

- Key result: all of the following have the same expressive power (i.e., they all describe *regular* languages):
 - Regular expressions (REs)
 - Non-deterministic finite automata (NFAs)
 - Deterministic finite automata (DFAs)
- Proof by construction
 - An algorithm exists to convert any RE to an NFA
 - An algorithm exists to convert any NFA to a DFA
 - An algorithm exists to convert any DFA to an RE
 - For every regular language, there exists a minimal DFA
 - Has the fewest number of states of all DFAs equivalent to RE

Finite Automata

• Finite automata transitions:



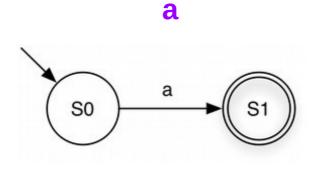
(dashed lines indicate transitions to a minimized DFA)

Finite Automata Conversions

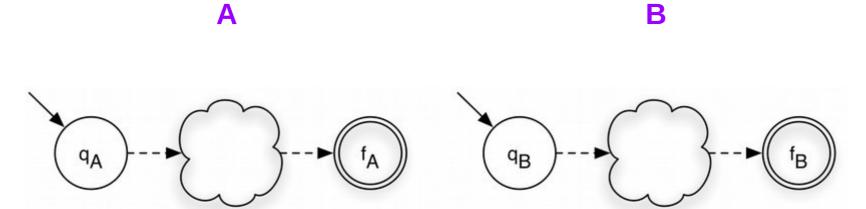
- RE to NFA: Thompson's construction
 - Core insight: inductively build up NFA using "templates"
 - Core concept: use null transitions to build NFA quickly
- NFA to DFA: Subset construction
 - Core insight: DFA nodes represent **subsets** of NFA nodes
 - Core concept: use **null closure** to calculate subsets
- DFA minimization: Hopcroft's algorithm
 - Core insight: create **partitions**, then keep splitting
- DFA to RE: Kleene's construction
 - Core insight: repeatedly eliminate states by **combining** regexes

Thompson's Construction

- Basic idea: create NFA inductively, bottom-up
 - Base case:
 - Start with individual alphabet symbols (see below)
 - Inductive case:
 - Combine by adding new states and null/epsilon transitions
 - **Templates** for the three basic operations
 - Invariant:
 - The NFA always has exactly one start state and one accepting state

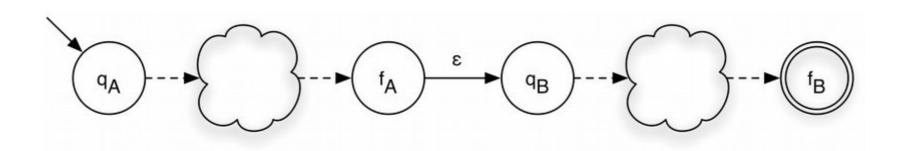


Thompson's: Concatenation

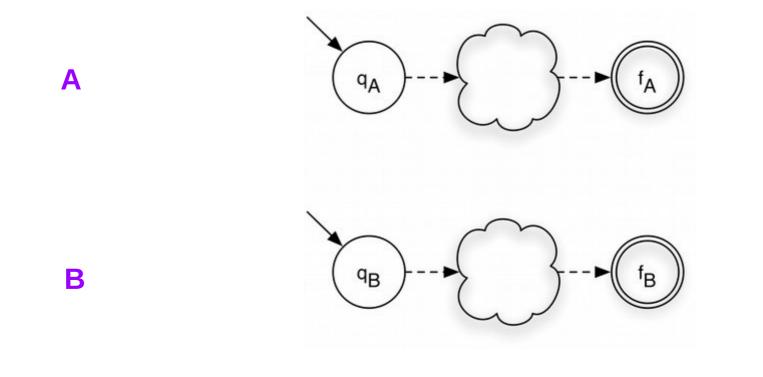


Thompson's: Concatenation

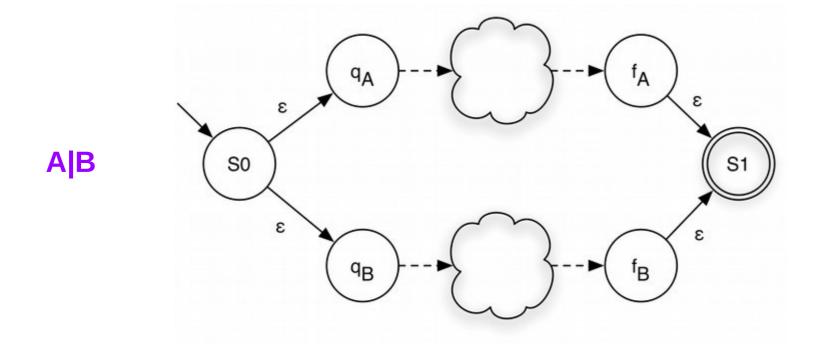
AB



Thompson's: Union



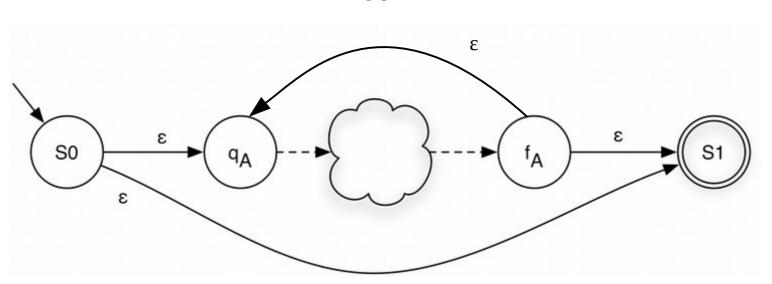
Thompson's: Union



Thompson's: Closure

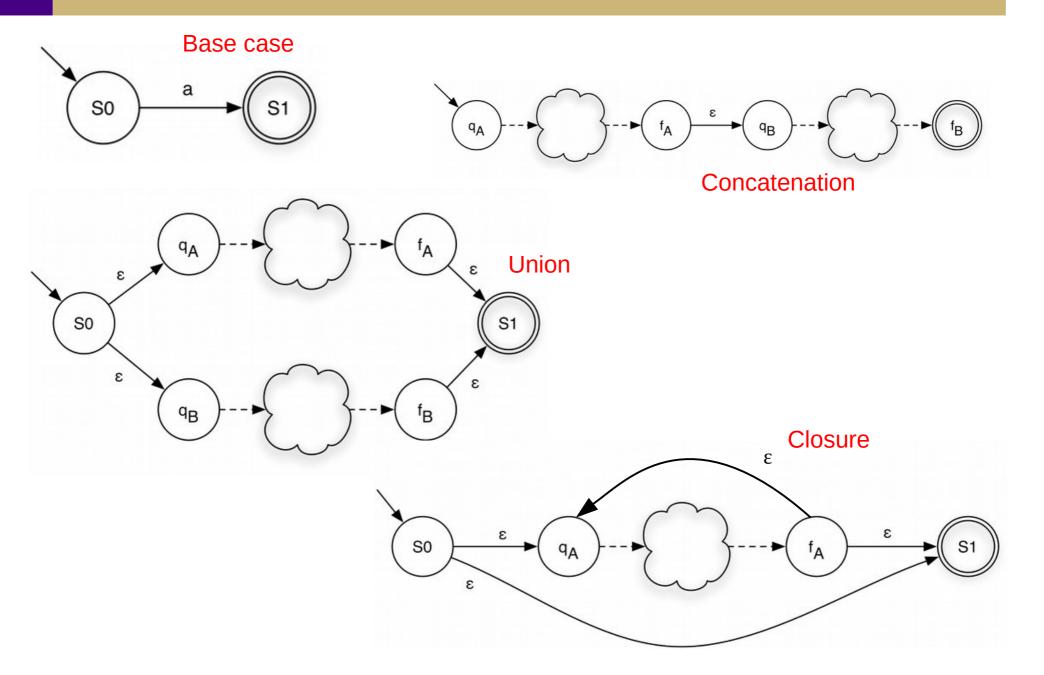


Thompson's: Closure



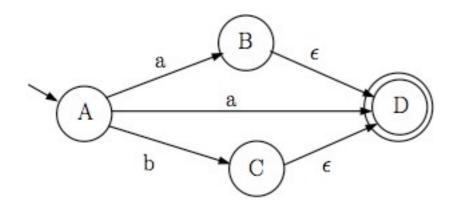
A*

Thompson's Construction



Subset construction

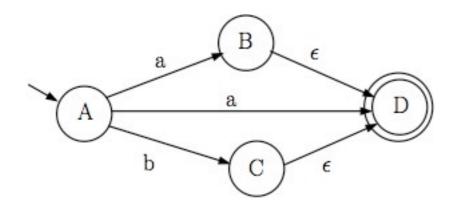
- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to "collapse" null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go "for free?"
 - Formally: ϵ -closure(s) = {s} \cup { t \in S | (s, $\epsilon \rightarrow t$) $\in \delta$ }
 - Simulates running all possible paths through the NFA



Null closure of A = { A } Null closure of B = { B, D } Null closure of C = Null closure of D =

Subset construction

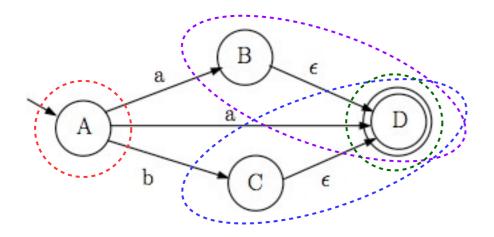
- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to "collapse" null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go "for free?"
 - Formally: ϵ -closure(s) = {s} \cup { t \in S | (s, $\epsilon \rightarrow$ t) \in δ }
 - Simulates running all possible paths through the NFA



Null closure of A = { A } Null closure of B = { B, D } Null closure of C = { C, D } Null closure of D = { D }

Subset construction

- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to "collapse" null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go "for free?"
 - Formally: ϵ -closure(s) = {s} \cup { t \in S | (s, $\epsilon \rightarrow t$) $\in \delta$ }
 - Simulates running all possible paths through the NFA



Null closure of A = { A } Null closure of B = { B, D } Null closure of C = { C, D } Null closure of D = { D }

Formal Algorithm

SubsetConstruction(S, Σ , s₀, S_A, δ):

 $t_{0} := \varepsilon \text{-closure}(s_{0})$ $S' := \{ t_{0} \} \qquad S'_{A} := \emptyset \qquad W := \{ t_{0} \}$

while W≠∅:

choose *u* in *W* and remove it from *W*

```
for each c in \Sigma:
```

 $t := \varepsilon$ -closure($\delta(u,c)$)

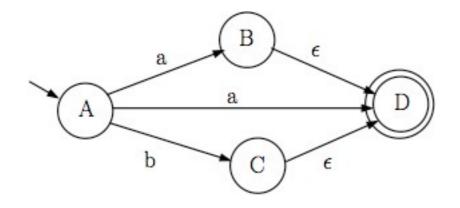
 $\delta'(u,c) = t$

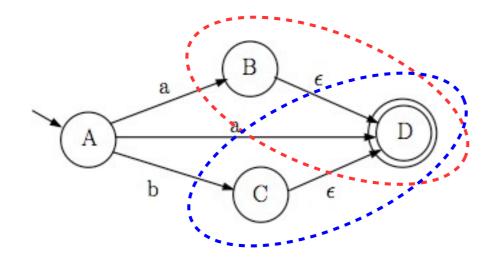
if t is not in S' then

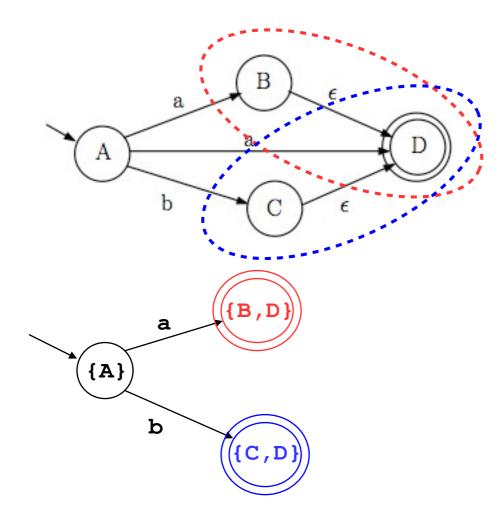
add t to S and W

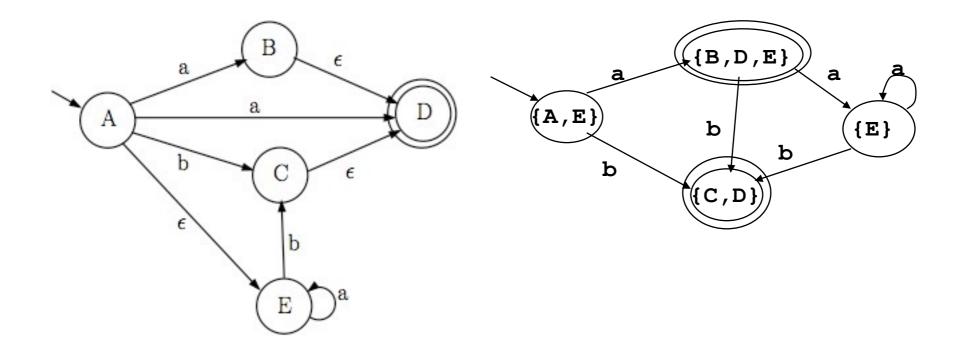
add *t* to S'_A if any state in *t* is also in S_A

return (S', Σ , t₀, S'_A, δ ')







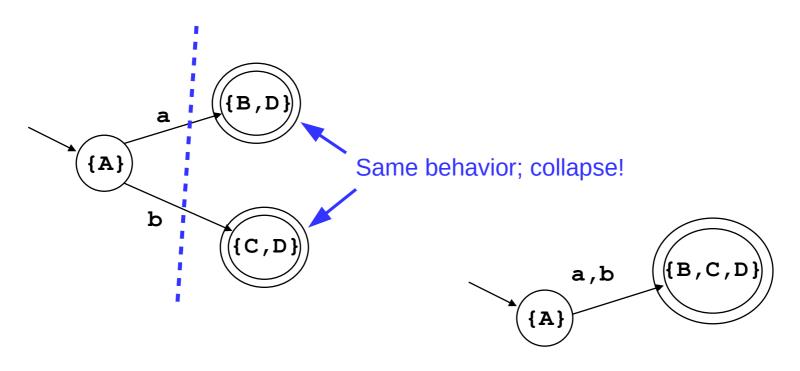


Algorithms

- Subset construction is a fixed-point algorithm
 - Textbook: "Iterated application of a monotone function"
 - Basically: A loop that is mathematically guaranteed to terminate at some point
 - When it terminates, some desirable property holds
 - In the case of subset construction: the NFA has been converted to a DFA
 - In the case of **DFA minimization** (up next): the DFA has the smallest number of states possible

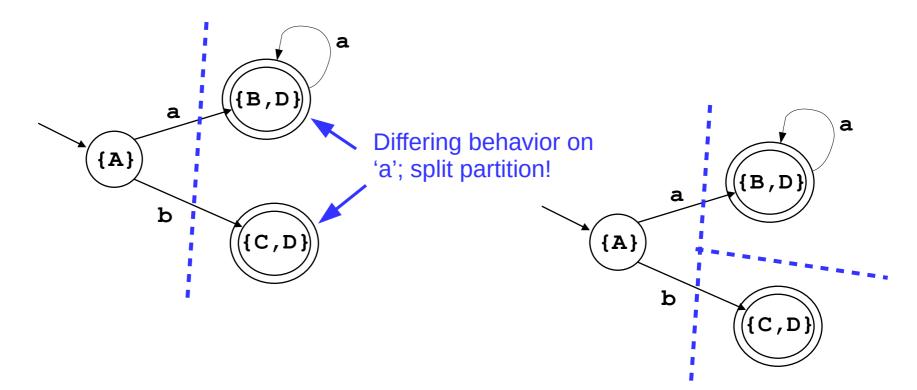
Hopcroft's DFA Minimization

- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with differing behaviors
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn't
- When done, each partition becomes a single state



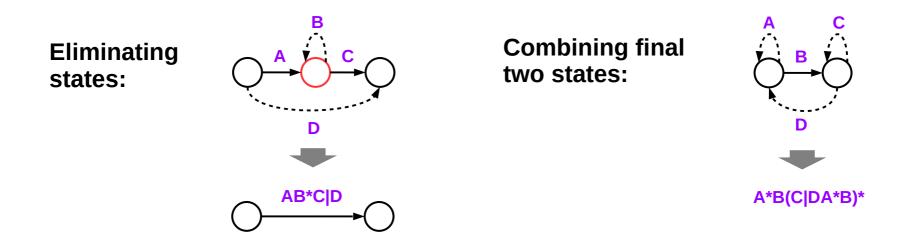
Hopcroft's DFA Minimization

- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with differing behaviors
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn't
- When done, each partition becomes a single state



Kleene's Construction

- Replace edge labels with REs
 - "a" \rightarrow "a" and "a,b" \rightarrow "a|b"
- Eliminate states by combining REs
 - See pattern below; apply pairwise around each state to be eliminated
 - Repeat until only one or two states remain
- Build final RE
 - One state with "A" self-loop \rightarrow "A*"
 - Two states: see pattern below

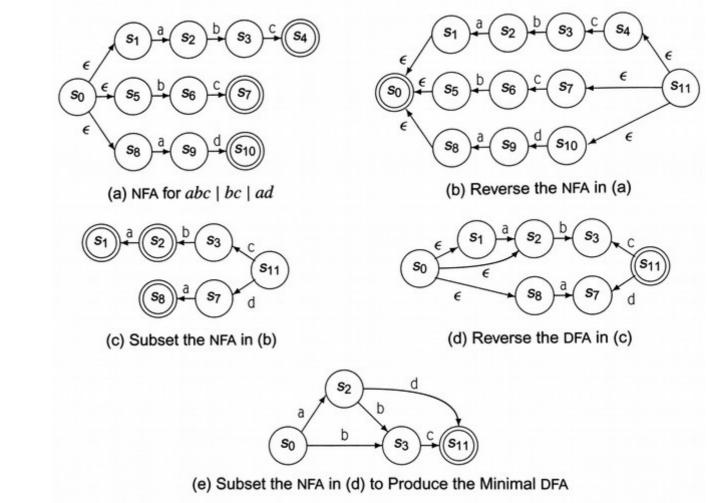


Brzozowski's Algorithm

- Direct NFA \rightarrow minimal DFA conversion
- Sub-procedures:
 - Reverse(n): invert all transitions in NFA n, adding a new start state connected to all old final states
 - Subset(n): apply subset construction to NFA n
 - Reach(n): remove any part of NFA n unreachable from start state
- Apply them all in order two times to get minimal DFA
 - First time eliminates duplicate suffixes
 - Second time eliminates duplicate prefixes
 - MinDFA(n) = Reach(Subset(Reverse(Reach(Subset(Reverse(n))))))
 - Potentially easier to code than Hopcroft's algorithm

Brzozowski's Algorithm

MinDFA(n) = Reach(Subset(Reverse(Reach(Subset(Reverse(n))))))

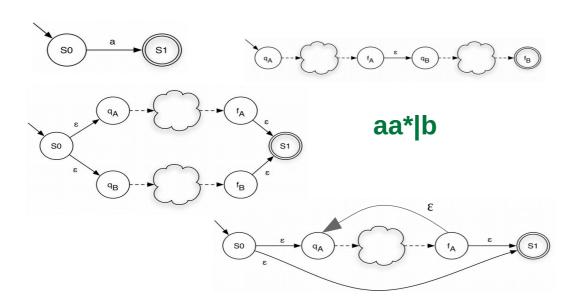


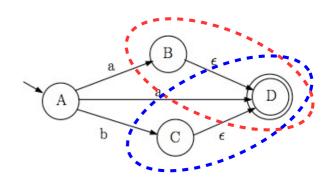
Example from EAC (p.76)

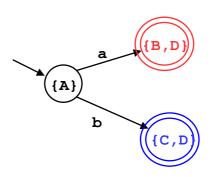
■ FIGURE 2.19 Minimizing a DFA with Brzozowski's Algorithm.

NFA/DFA complexity

- What are the time and space requirements to...
 - Build an NFA?
 - Run an NFA?
 - Build a DFA?
 - Run a DFA?







NFA/DFA complexity

- Thompson's construction
 - At most two new states and four transitions per regex character
 - Thus, a linear space increase with respect to the # of regex characters
 - Constant # of operations per increase means linear time as well
- NFA execution
 - Proportional to both NFA size and input string size (multiplicatively)
 - Must track multiple simultaneous "current" states
- Subset construction
 - Potential exponential state space explosion
 - A *n*-state NFA could require up to 2^{*n*} DFA states
 - However, this rarely happens in practice
- DFAs execution
 - Proportional to input string size only (only track a single "current" state)

NFA/DFA complexity

- NFAs build quicker (linear) but run slower
 - Better if you will only run the FA a few times
 - Or if you need features that are difficult to implement with DFAs
- DFAs build slower but run faster (linear)
 - Better if you will run the FA many times (like in a compiler)

	NFA	DFA
Build time	O(<i>m</i>)	O(2 ^{<i>m</i>})
Run time	$O(m \times n)$	O(<i>n</i>)

m = length of regular expression n = length of input string

Lexing/Scanning w/ DFAs

- One approach:
 - Combine all regexes and build one DFA
 - Run DFA on input until there is no outgoing edge on a character
 - If current state is accepting, generate token and restart
 - Otherwise, back up to most recent accepting state then generate token and restart (if no accepting states were passed, report error)
- Another approach (P1):
 - Build a DFA for each regex
 - Run each DFA in sequence in priority order on input until there is no outgoing edge on the next character
 - If current state is accepting, generate token and restart
 - Otherwise, run the next DFA (if no more DFAs, report error)

Lexers

- Auto-generated
 - Table-driven: generic scanner, auto-generated tables
 - Direct-coded: hard-code transitions using jumps
 - Common tools: lex/flex and similar
- Hand-coded
 - Better I/O performance (i.e., buffering)
 - More efficient interfacing w/ other phases
 - This is what we'll do for P1

Handling Keywords

- Issue: keywords are valid identifiers
- Option 1: Embed into NFA/DFA
 - Separate regex for keywords
 - Easier/faster for generated scanners
- Option 2: Use lookup table
 - Scan as identifier then check for a keyword
 - Easier for hand-coded scanners
 - (Thus, this is probably easier for P1)

Handling Whitespace

- Issue: whitespace is usually ignored
 - Write a regex and remove it before each new token
- Side effect: some results are counterintuitive
 - Is this a valid token? "3abc"
 - For now, it's actually two!
 - We'll reject this sequence later in the parsing phase

Escaped characters

- Issue: some characters must be escaped in regular expressions
 - E.g., "+" or "*"
- Complication: C strings also have escape codes!
 - So you'll need "\\+" or "*"
 - And "\\\\" for recognizing a slash!