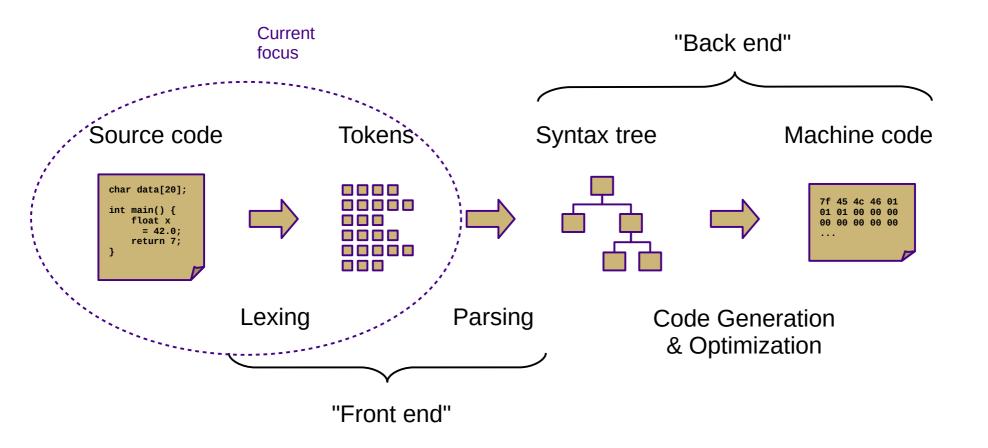

CS 432 Fall 2021

https://xkcd.com/1171/


Mike Lam, Professor

a|(bc)*

Regular Expressions and Finite Automata

Compilation

Lexical Analysis

- Lexemes or tokens: the smallest building blocks of a language's syntax
- Lexing or scanning: the process of separating a character stream into tokens

total = sum(vals) / n		char *str = "hi";	
total = sum (vals) /	identifier equals_op identifier left_paren identifier right_paren divide_op	char * str = "hi" ;	keyword star_op identifier equals_op str_literal semicolon
n	identifier		

Discussion question

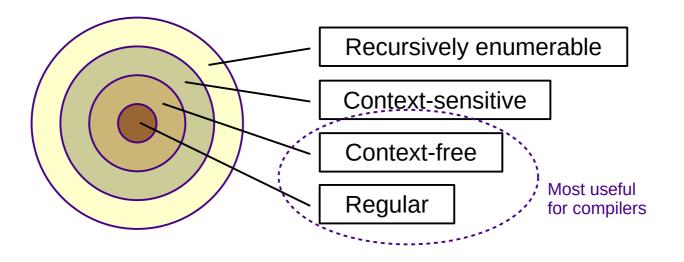
• What is a *language*?

Language

• A language is "a (potentially infinite) set of strings over a finite alphabet"

Discussion question

• How do we describe languages?


хуу	ху		
ху	хуу	ху	xyy xyyz xyyzz xyyzzz
xyyzzz	xyz	xyz	
xyz	xyyz	xyzz	
xyzz	xyzz		
xyyzz	xyyzz		
ХУУΖ	XYZZZ		
xyzzz (etc.)	xyyzzz (etc.)		

Language description

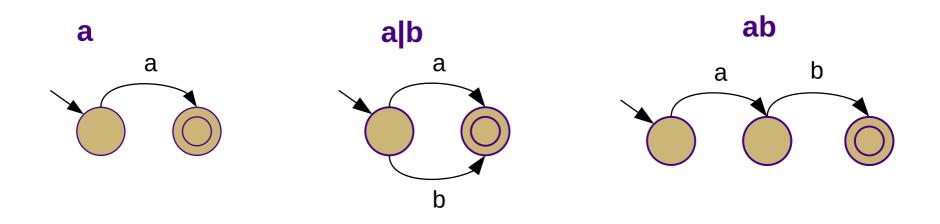
- Ways to describe languages
 - Ad-hoc prose
 - "A single 'x' followed by one or two 'y's followed by any number of 'z's"
 - Formal regular expressions (current focus)
 - x(y|yy)z*
 - Formal grammars (in two weeks)
 - $A \rightarrow X B C$
 - B → y | y y
 - $C \rightarrow Z C \mid \epsilon$

Languages

Chomsky Hierarchy of Languages

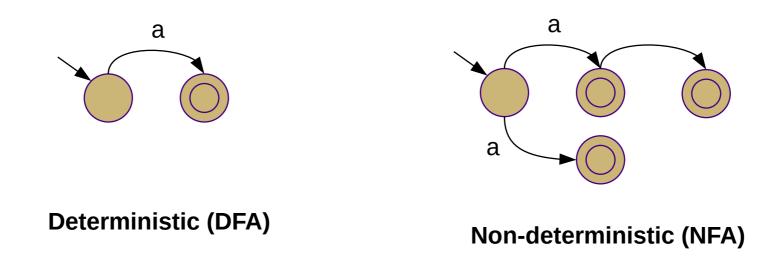
- Alphabet:
 - $\Sigma = \{ \text{ finite set of all characters } \}$
- Language:
 - L = { potentially infinite set of sequences of characters from Σ }

Regular expressions


- Regular expressions describe regular languages
 - Can also be thought of as generalized search patterns
- Three basic recursive operations:
 - Alternation: a|b
 Lowest precedence
 Concatenation: ab
 ("Kleene") Closure: a*
 Highest precedence
- Extended constructs:
 - Character sets/classes: $[0-9] \equiv [0...9] \equiv 0|1|2|3|4|5|6|7|8|9$
 - Repetition / positive closure: $a^2 \equiv aa$ $a^3 \equiv aaa$ $a + \equiv aa^*$
 - Grouping: $(a|b)c \equiv ac|bc$

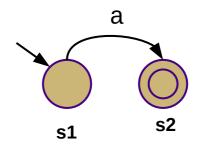
Discussion question

- How would you implement regular expressions?
 - Given a regular expression and a string, how would you tell whether the string belongs to the language described by the regular expression?


Lexical Analysis

- Implemented using state machines (finite state automata)
 - Set of states with a single start state
 - Transitions between states on inputs (w/ implicit dead states)
 - Some states are final or accepting

Lexical Analysis

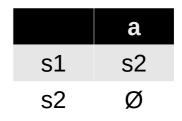

- Deterministic vs. non-deterministic
 - Non-deterministic: multiple possible states for given sequence
 - One edge from each state per character (deterministic)
 - Might lead to implicit "dead state" w/ self-loop on all characters
 - Multiple edges from each state per character (non-deterministic)
 - "Empty" or ε-transitions (non-deterministic)

Deterministic finite automata

- Formal definition
 - S: set of states
 - Σ: alphabet (set of characters)
 - δ: transition function: (S, Σ) \rightarrow S
 - s₀: start state
 - S_A: accepting/final states
- Acceptance algorithm

 $s := s_0$ for each input c: $s := \delta(s,c)$ return $s \in S_A$

$$S = \{ s1, s2 \}$$


$$\Sigma = \{ a \}$$

$$\delta = \{ (s1, a \rightarrow s2), (s2, a \rightarrow \emptyset) \}$$

$$s_{0:} = s1$$

SA = { s2 }

Alternative δ representation:

Non-deterministic finite automata

- Formal Definition
 - S, $\Sigma,$ $s_{0},$ and S_{A} same as DFA

 - ϵ -closure: all states reachable from s via ϵ -transitions
 - Formally: $\epsilon\text{-closure}(s)$ = {s} \cup { $t\in S\mid$ (s, $\epsilon)$ $_{\rightarrow}$ $t\in\delta$ }
 - Extended to sets by union over all states in set
- Acceptance algorithm
 - $T := \varepsilon\text{-}closure(s_0)$

for each input *c*:

```
N := \{\}
for each s in T:

N := N \cup \varepsilon \text{-closure}(\delta(s,c))
T := N
return |T \cap S_A| > 0
```

Summary

DFAs

- S: set of states
- Σ: alphabet (set of characters)
- δ : transition function: (S, Σ) \rightarrow S
- s₀: start state
- S_A: accepting/final states

accept():

 $s := s_0$

for each input c:

 $s := \delta(s,c)$ return $s \in S_A$

NFAs

- δ may return a set of states
- δ may contain ϵ -transitions
- δ may contain transitions to multiple states on a symbol

accept():

 $T := \varepsilon \text{-}closure(s_0)$ for each input c: $N := \{\}$ for each s in T: $N := N \cup \varepsilon \text{-}closure(\delta(s,c))$ T := Nreturn $|T \cap S_A| > 0$

Equivalence

- A regular expression and a finite automaton are equivalent if they recognize the same language
 - Same applies between different REs and between different FAs
- Regular expressions, NFAs, and DFAs all describe the same set of languages
 - "Regular languages" from Chomsky hierarchy
- Next week, we will learn how to convert between them

Application

- P1: Use POSIX regular expressions to tokenize Decaf files
 - Process the input one line at a time
 - Generally, create one regex per token type
 - Each regex begins with "^" (only match from beginning)
 - Prioritize regexes and try each of them in turn
 - When you find a match, extract the matching text
 - Repeat until no match is found or input is consumed
 - Less efficient than an auto-generated lexer
 - However, it is simpler to understand
 - Our approach to P2 will be similar

Source code Tokens char data[20]; int main() { float x = 42.0; return 7;