Data-Flow Analysis
int main() {
 int x = 4 + 5;
 return x;
}
int a;
a = 0;
while (a < 10) {
 a = a + 1;
}

loadI 0 => r1
loadI 10 => r2
l1:
cmp_LT r1, r2 => r4
cbr r4 => l2, l3
l2:
 addI r1, 1 => r1
 jump l1
l3:
 storeAI r1 => [bp-4]

loadI 0 => r1
storeAI r1 => [bp-4]
loadAI r1 => [bp-4]
loadI 10 => r2
loadI 10 => r3
cmp_LT r2, r3 => r4
cbr r4 => l2, l3
l2:
 loadAI [bp-4] => r5
 loadI 1 => r6
 add r5, r6 => r7
 storeAI r7 => [bp-4]
jump l1
l3:
loadI 10 => r1
storeAI r1 => [bp-4]
Optimization is Hard

- **Problem**: it's hard to reason about all possible executions
 - Preconditions and inputs may differ
 - Optimizations should be correct and efficient in all cases
- **Optimization tradeoff**: investment vs. payoff
 - "Better than naïve" is fairly easy
 - "Optimal" is impossible
 - Real world: somewhere in between
 - Better speedups with more static analysis
 - Usually worth the added compile time
- **Also**: linear IRs (e.g., ILOC) don't explicitly expose control flow
 - This makes analysis and optimization difficult
Control-Flow Graphs

• Basic blocks
 - "Maximal-length sequence of branch-free code"
 - "Atomic" sequences (instructions that always execute together)

• Control-flow graph (CFG)
 - Nodes/vertices for basic blocks
 - Edges for control transfer
 • Branch/jump instructions (explicit) or fallthrough (implicit)
 • p is a predecessor of q if there is a path from p to q
 - p is an immediate predecessor if there is an edge directly from p to q
 • q is a successor of p if there is a path from p to q
 - q is an immediate successor if there is an edge directly from p to q
Control-Flow Graphs

- Conversion: linear IR to CFG
 - Find leaders (initial instruction of a basic block) and build blocks
 - Every call or jump target is a leader
 - Add edges between blocks based on jumps/branches and fallthrough
 - Complicated by indirect jumps (none in our ILOC!)

```plaintext
foo:
  loadAI [bp-4] => r1
cbr r1 => l1, l2
l1:
  loadI 5 => r2
  jump l3
l2:
  loadI 10 => r2
l3:
  storeAI r2 => [bp-4]
```
Static CFG Analysis

- Single block analysis is easy, and trees are too
- General CFGs are harder
 - Which branch of a conditional will execute?
 - How many times will a loop execute?
- How do we handle this?
 - One method: iterative data-flow analysis
 - Simulate all possible paths through a region of code
 - “Meet-over-all-paths” conservative solution
 - Meet operator combines information across paths
Semilattices

• In general, a semilattice is a set of values \(L \), special values \(\top \) (top) and \(\bot \) (bottom), and a meet operator \(^\wedge \) such that
 - \(a \geq b \) iff \(a ^\wedge b = b \)
 - \(a > b \) iff \(a \geq b \) and \(a \neq b \)
 - \(a ^\wedge \top = a \) for all \(a \in L \)
 - \(a ^\wedge \bot = \bot \) for all \(a \in L \)

• Partial ordering
 - Monotonic

Figure 9.22 from Dragon book: semilattice of definitions using \(\cup \) (set union) as the meet operation
Constant propagation

- For **sparse simple constant propagation (SSCP)**, the lattice is very shallow
 - \(c_i \uparrow \top = c_i \) for all \(c_i \)
 - \(c_i \uparrow \bot = \bot \) for all \(c_i \)
 - \(c_i \uparrow c_j = c_i \) if \(c_i = c_j \)
 - \(c_i \uparrow c_j = \bot \) if \(c_i \neq c_j \)

- Basically: each SSA value is either unknown (\(\top \)), a known constant (\(c_i \)), or it is a variable (\(\bot \))
 - Initialize to unknown (\(\top \)) for all SSA values
 - Interpret operations over lattice values (always lowering)
 - Propagate information until convergence
Data-Flow Analysis

• Define properties of interest for basic blocks
 - Usually sets of blocks, variables, definitions, etc.
• Define a formula for how those properties change within a block
 - F(B) is based on F(A) where A is a predecessor or successor of B
 - This is basically the meet operator for a particular problem
• Specify initial information for all blocks
 - Entry/exit blocks usually have different values
• Run an iterative update algorithm to propagate changes
 - Keep running until the properties converge for all basic blocks
• Key concept: finite descending chain property
 - Properties must be monotonically increasing or decreasing
 - Otherwise, termination is not guaranteed
Data-Flow Analysis

- This kind of algorithm is called a fixed-point algorithm
 - It runs until it converges to a “fixed point”
- **Forward vs. backward** data-flow analysis
 - Forward: along graph edges (based on predecessors)
 - Backward: reverse of forward (based on successors)
- Types of data-flow analysis
 - Constant propagation
 - Dominance
 - Liveness
 - Available expressions
 - Reaching definitions
 - Anticipable expressions
Dominance

- Block A **dominates** block B if A is on every path from the entry to B
 - Block A **immediately** dominates block B if there are no blocks between them
 - Block B **postdominates** block A if B is on every path from A to an exit
 - Every block both dominates and postdominates itself

- Simple dataflow analysis formulation
 - $\text{preds}(b)$ is the set of blocks that are predecessors of block b
 - $\text{Dom}(b)$ is the set of blocks that dominate block b
 - intersection of Dom for all immediate predecessors
 - $\text{PostDom}(b)$ is the set of blocks that postdominate block b
 - (similar definition using $\text{succs}(b)$)

Initial conditions: $\text{Dom}(\text{entry}) = \{\text{entry}\}$
\[
\forall b \neq \text{entry}, \quad \text{Dom}(b) = \{ \text{all blocks} \}
\]

Updates: $\text{Dom}(b) = \{b\} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p)$
Liveness

• Variable v is live at point p if there is a path from p to a use of v with no intervening assignment to v
 - Useful for finding uninitialized variables (live at function entry)
 - Useful for optimization (remove unused assignments)
 - Useful for register allocation (keep live vars in registers)

• Initial information: $UEVar$ and $VarKill$
 - $UEVar(B)$: variables used in B before any redefinition in B
 • (“upwards exposed” variables)
 - $VarKill(B)$: variables that are defined in B

• Textbook notation note: $X \cap \overline{Y} = X - Y$

Initial conditions: $\forall b, \hspace{0.5cm} LiveOut(b) = \emptyset$

Updates: $LiveOut(b) = \bigcup_{s \in succs(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s))$
Liveness example

(a) Code for the Basic Blocks

\[\begin{align*}
B_0: & \quad i \leftarrow 1 \\
& \quad \rightarrow B_1 \\
B_1: & \quad a \leftarrow \ldots \\
& \quad c \leftarrow \ldots \\
& \quad (a < c) \rightarrow B_2, B_5 \\
B_2: & \quad b \leftarrow \ldots \\
& \quad c \leftarrow \ldots \\
& \quad d \leftarrow \ldots \\
& \quad \rightarrow B_3 \\
B_3: & \quad y \leftarrow a + b \\
& \quad z \leftarrow c + d \\
& \quad i \leftarrow i + 1 \\
& \quad (i \leq 100) \rightarrow B_1, B_4 \\
B_4: & \quad \text{return} \\
B_5: & \quad a \leftarrow \ldots \\
& \quad d \leftarrow \ldots \\
& \quad (a \leq d) \rightarrow B_6, B_8 \\
B_6: & \quad d \leftarrow \ldots \\
& \quad \rightarrow B_7 \\
B_7: & \quad b \leftarrow \ldots \\
& \quad \rightarrow B_3 \\
B_8: & \quad c \leftarrow \ldots \\
& \quad \rightarrow B_7 \\
\end{align*} \]

(b) Control-Flow Graph

(c) Initial Information

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 & B_0 & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 & B_7 & B_8 \\
\hline
\text{UEVAR} & \emptyset & \emptyset & \emptyset & \{a,b,c,d,i\} & \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
\text{VARKILL} & \{i\} & \{a,c\} & \{b,c,d\} & \{y,z,i\} & \emptyset & \{a,d\} & \{d\} & \{b\} & \{c\} \\
\end{array}
\]

\(\forall b, \quad \text{LiveOut}(b) = \emptyset \quad \text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s)) \)
Alternative definition

- Define **LiveIn** as well as **LiveOut**
 - Two formulas for each basic block
 - Makes things a bit simpler to reason about
 - Separates change *within* block from change *between* blocks

\[
\forall b, \; \text{LiveIn}(b) = \emptyset, \; \text{LiveOut}(b) = \emptyset
\]

\[
\text{LiveIn}(b) = \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b))
\]

\[
\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s)
\]
Block orderings

- forwards dataflow analyses converge faster with reverse postorder processing of CFG blocks
 - Visit as many of a block’s predecessors as possible before visiting that block
 - Strict reversal of normal postorder traversal
 - Similar to concept of topological sorting on DAGs
 - NOT EQUIVALENT to preorder traversal!
 - Backwards analyses should use reverse postorder on reverse CFG

Valid preorderings:
- A, B, D, C (left first)
- A, C, D, B (right first)

Valid postorderings:
- D, B, C, A (left first)
- D, C, B, A (right first)

Depth-first search:
- A, B, D, B, A, C, A (left first)
- A, C, D, C, A, B, A (right first)

Valid reverse postorderings:
- A, C, B, D
- A, B, C, D
Summary

\[\text{Dom}(\text{entry}) = \{\text{entry}\} \]
\[\forall b \neq \text{entry}, \quad \text{Dom}(b) = \{\text{all blocks}\} \]
\[\text{Dom}(b) = \{b\} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p) \]

\[\forall b, \quad \text{LiveOut}(b) = \emptyset \]
\[\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s)) \]

\[\forall b, \quad \text{LiveIn}(b) = \emptyset, \quad \text{LiveOut}(b) = \emptyset \]
\[\text{LiveIn}(b) = \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b)) \]
\[\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s) \]

Dominance

Liveness

(EAC version)

Liveness

(Dragon version)