Finite Automata Conversions and Lexing
Finite Automata

• Key result: all of the following have the same expressive power (i.e., they all describe regular languages):
 - Regular expressions (REs)
 - Non-deterministic finite automata (NFAs)
 - Deterministic finite automata (DFAs)

• Proof by construction
 - An algorithm exists to convert any RE to an NFA
 - An algorithm exists to convert any NFA to a DFA
 - An algorithm exists to convert any DFA to an RE
 - For every regular language, there exists a minimal DFA
 • Has the fewest number of states of all DFAs equivalent to RE
Finite Automata

- Finite automata transitions:

 Regex ➔ NFA ➔ DFA ➔ Lexer

 Thompson's construction

 Kleene's construction

 Hopcroft's algorithm (minimize)

 Brzozowski's algorithm (direct to minimal DFA)

 Subset construction

 Lexer generators

 (dashed lines indicate transitions to a minimized DFA)
Finite Automata Conversions

- **RE to NFA:** Thompson's construction
 - Core insight: *inductively* build up NFA using “templates”
 - Core concept: use *null transitions* to build NFA quickly

- **NFA to DFA:** Subset construction
 - Core insight: DFA nodes represent *subsets* of NFA nodes
 - Core concept: use *null closure* to calculate subsets

- **DFA minimization:** Hopcroft’s algorithm
 - Core insight: create *partitions*, then keep splitting

- **DFA to RE:** Kleene's construction
 - Core insight: repeatedly eliminate states by *combining* regexes
Thompson's Construction

- Basic idea: create NFA inductively, bottom-up
 - Base case:
 - Start with individual alphabet symbols (see below)
 - Inductive case:
 - Combine by adding new states and null/epsilon transitions
 - **Templates** for the three basic operations
 - Invariant:
 - The NFA always has exactly one start state and one accepting state

![Diagram of NFA with start state S0, accepting state S1, and transition on symbol a]
Thompson's: Concatenation

A

B

$q_A \rightarrow f_A \rightarrow q_B \rightarrow f_B$
Thompson's: Concatenation

AB
Thompson's: Union
Thompson's: Union

\[A \cup B \]
Thompson's: Closure
Thompson's: Closure

A*
Thompson's Construction

- **Base case**
 - $S_0 \xrightarrow{a} S_1$

- **Concatenation**
 - $q_A \xrightarrow{} f_A \xrightarrow{\varepsilon} q_B \xrightarrow{} f_B$

- **Union**
 - $q_A \xrightarrow{} f_A \xrightarrow{\varepsilon} q_B \xrightarrow{} f_B$

- **Closure**
 - $S_0 \xrightarrow{\varepsilon} q_A \xrightarrow{} f_A \xrightarrow{\varepsilon} S_1$
Subset construction

• Basic idea: create DFA incrementally
 – Each DFA state represents a subset of NFA states
 – Use null closure operation to “collapse” null/epsilon transitions
 – Null closure: all states reachable via epsilon transitions
 • Essentially: where can we go “for free?”
 • Formally: ϵ-closure(s) = $\{s\} \cup \{ t \in S \mid (s,\epsilon \rightarrow t) \in \delta \}$
 – Simulates running all possible paths through the NFA

Null closure of A = $\{A\}$
Null closure of B = $\{B, D\}$
Null closure of C =
Null closure of D =
Basic idea: create DFA incrementally
- Each DFA state represents a subset of NFA states
- Use null closure operation to “collapse” null/epsilon transitions
- Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go “for free?”
 - Formally: ϵ-closure(s) = \{s\} \cup \{ t \in S | (s, ϵ \rightarrow t) \in δ \}
- Simulates running all possible paths through the NFA

Null closure of A = \{ A \}
Null closure of B = \{ B, D \}
Null closure of C = \{ C, D \}
Null closure of D = \{ D \}
Subset construction

- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to “collapse” null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go “for free?”
 - Formally: ε-closure(s) = \{s\} \cup \{ t \in S | (s, ε \rightarrow t) \in δ \}
 - Simulates running all possible paths through the NFA

Null closure of A = \{A\}
Null closure of B = \{B, D\}
Null closure of C = \{C, D\}
Null closure of D = \{D\}
SubsetConstruction\((S, \Sigma, s_0, S_A, \delta)\):

\[
\begin{align*}
t_0 &:= \varepsilon\text{-closure}(s_0) \\
S' &:= \{ t_0 \} \quad S'_A := \emptyset \quad W := \{ t_0 \}
\end{align*}
\]

\textbf{while} \(W \neq \emptyset \):

choose \(u \) in \(W \) and remove it from \(W \)

\textbf{for each} \(c \) in \(\Sigma \):

\[
\begin{align*}
t &:= \varepsilon\text{-closure}(\delta(u,c)) \\
\delta'(u,c) &:= t
\end{align*}
\]

\textbf{if} \(t \) \textit{is not in} \(S' \) \textbf{then}

add \(t \) to \(S' \) and \(W \)

add \(t \) to \(S'_A \) if any state in \(t \) is also in \(S_A \)

\textbf{return} \((S', \Sigma, t_0, S'_A, \delta')\)
Subset Example

A → B
A → C
B → D
C → D
Subset Example
Subset Example

The diagram illustrates a subset example with nodes A, B, C, and D. The nodes are connected by edges labeled with symbols a, b, and ε. The subsets {A}, {B,D}, {C,D} are highlighted with different colors and outlines.
SubsetExample

SubsetConstruction(S, Σ, s_0, S_A, δ):

$t_0 := \varepsilon$-closure(s_0)

$S' := \{ t_0 \} \quad S'_A := \emptyset \quad W := \{ t_0 \}$

while $W \neq \emptyset$:

choose u in W and remove it from W

for each c in Σ:

$t := \varepsilon$-closure($\delta(u,c)$)

$\delta'(u,c) = t$

if t is not in S' then

add t to S' and W

add t to S'_A if there exists a state v in t that is also in S_A

return $(S', \Sigma, t_0, S'_A, \delta')$
Subset Example
• Subset construction is a fixed-point algorithm
 – Textbook: “Iterated application of a monotone function”
 – Basically: A loop that is mathematically guaranteed to terminate at some point
 – When it terminates, some desirable property holds
 • In the case of **subset construction**: the NFA has been converted to a DFA
 • In the case of **DFA minimization** (up next): the DFA has the smallest number of states possible
Hopcroft’s DFA Minimization

- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with **differing behaviors**
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn’t
- When done, each partition becomes a single state

![Diagram showing the process of DFA minimization, with states labeled \{A\}, \{B,D\}, \{C,D\}, and \{B,C,D\} and transitions for symbols a and b.]
Hopcroft’s DFA Minimization

- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with differing behaviors
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn’t
- When done, each partition becomes a single state
Kleene's Construction

• Replace edge labels with REs
 - "a" → "a" and "a,b" → "a|b"
• Eliminate states by combining REs
 - See pattern below; apply pairwise around each state to be eliminated
 - Repeat until only one or two states remain
• Build final RE
 - One state with "A" self-loop → "A*"
 - Two states: see pattern below

Eliminating states:

Combining final two states:
Brzozowski’s Algorithm

- Direct NFA → minimal DFA conversion
- Sub-procedures:
 - \texttt{Reverse}(n): invert all transitions in NFA n, adding a new start state connected to all old final states
 - \texttt{Subset}(n): apply subset construction to NFA n
 - \texttt{Reach}(n): remove any part of NFA n unreachable from start state
- Apply them all in order two times to get minimal DFA
 - First time eliminates duplicate suffixes
 - Second time eliminates duplicate prefixes
 - \texttt{MinDFA}(n) = \texttt{Reach(Subset(Reverse(Reach(Subset(Reverse(n))))))}
 - Potentially easier to code than Hopcroft’s algorithm
Brzozowski's Algorithm

- $\text{MinDFA}(n) = \text{Reach}(\text{Subset}(\text{Reverse}(\text{Reach}(\text{Subset}(\text{Reverse}(n)))))))$

Example from EAC (p.76)
NFA/DFA complexity

- What are the time and space requirements to...
 - Build an NFA?
 - Run an NFA?
 - Build a DFA?
 - Run a DFA?
NFA/DFA complexity

• Thompson's construction
 – At most two new states and four transitions per regex character
 – Thus, a linear space increase with respect to the # of regex characters
 – Constant # of operations per increase means linear time as well

• NFA execution
 – Proportional to both NFA size and input string size (multiplicatively)
 – Must track multiple simultaneous “current” states

• Subset construction
 – Potential exponential state space explosion
 – A n-state NFA could require up to 2^n DFA states
 – However, this rarely happens in practice

• DFAs execution
 – Proportional to input string size only (only track a single “current” state)
NFA/DFA complexity

- NFAs build quicker (linear) but run slower
 - Better if you will only run the FA a few times
 - Or if you need features that are difficult to implement with DFAs
- DFAs build slower but run faster (linear)
 - Better if you will run the FA many times (like in a compiler)

<table>
<thead>
<tr>
<th></th>
<th>NFA</th>
<th>DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build time</td>
<td>$O(m)$</td>
<td>$O(2^m)$</td>
</tr>
<tr>
<td>Run time</td>
<td>$O(m \times n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

$m = \text{length of regular expression}$
$n = \text{length of input string}$
Lexing/Scanning w/ DFAs

• One approach:
 – Combine all regexes and build one DFA
 – Run DFA on input until there is no outgoing edge on a character
 • If current state is accepting, generate token and restart
 • Otherwise, back up to most recent accepting state then generate token and restart (if no accepting states were passed, report error)

• Another approach (P1):
 – Build a DFA for each regex
 – Run each DFA in sequence in priority order on input until there is no outgoing edge on a character
 • If current state is accepting, generate token and restart
 • Otherwise, run the next DFA (if no more DFAs, report error)
Lexers

• Auto-generated
 – Table-driven: generic scanner, auto-generated tables
 – Direct-coded: hard-code transitions using jumps
 – Common tools: lex/flex and similar

• Hand-coded
 – Better I/O performance (i.e., buffering)
 – More efficient interfacing w/ other phases
 – This is what we’ll do for P1
Handling Keywords

- Issue: keywords are valid identifiers
- Option 1: Embed into NFA/DFA
 - Separate regex for keywords
 - Easier/faster for generated scanners
- Option 2: Use lookup table
 - Scan as identifier then check for a keyword
 - Easier for hand-coded scanners
 - (Thus, this is probably easier for P1)
Handling Whitespace

• Issue: whitespace is usually ignored
 – Write a regex and remove it before each new token

• Side effect: some results are counterintuitive
 – Is this a valid token? “3abc”
 – For now, it’s actually two!
 – We’ll reject this sequence later in the parsing phase
Escaped characters

• Issue: some characters must be escaped in regular expressions
 – E.g., “+” or “*”

• Complication: C strings also have escape codes!
 – So you’ll need “\\+” or “*”
 – And “\\\\” for recognizing a slash!