Data-Flow Analysis
int main() {
 int x = 4 + 5;
 return x;
}
Optimization

```c
int a;
a = 0;
while (a < 10) {
    a = a + 1;
}

loadI 0 => r1
loadI 10 => r2
l1:
cmp_LT r1, r2 => r4
cbr r4 => l2, l3
l2:
addI r1, 1 => r1
jump l1
l3:
storeAI r1 => [bp-4]
```

```assembly
loadI 0 => r1
storeAI r1 => [bp-4]
l1:
loadAI [bp-4] => r2
loadI 10 => r3
cmp_LT r2, r3 => r4
cbr r4 => l2, l3
l2:
loadAI [bp-4] => r5
loadI 1 => r6
add r5, r6 => r7
storeAI r7 => [bp-4]
jump l1
l3:
loadI 10 => r1
storeAI r1 => [bp-4]
```
Optimization is Hard

- **Problem**: it's hard to reason about all possible executions
 - Preconditions and inputs may differ
 - Optimizations should be correct and efficient in all cases
- **Optimization tradeoff**: investment vs. payoff
 - "Better than naïve" is fairly easy
 - "Optimal" is impossible
 - Real world: somewhere in between
 - Better speedups with more static analysis
 - Usually worth the added compile time
- **Also**: linear IRs (e.g., ILOC) don't explicitly expose control flow
 - This makes analysis and optimization difficult
Control-Flow Graphs

- **Basic blocks**
 - "Maximal-length sequence of branch-free code"
 - "Atomic" sequences (instructions that always execute together)

- **Control-flow graph** (CFG)
 - Nodes/vertices for basic blocks
 - Edges for control transfer
 - Branch/jump instructions (explicit) or fallthrough (implicit)
 - p is a **predecessor** of q if there is a path from p to q
 - p is an **immediate** predecessor if there is an edge directly from p to q
 - q is a **successor** of p if there is a path from p to q
 - a is an **immediate** successor if there is an edge directly from p to q
Control-Flow Graphs

• Conversion: linear IR to CFG
 – Find leaders (initial instruction of a basic block) and build blocks
 • Every call or jump target is a leader
 – Add edges between blocks based on branches and fallthrough
 – Complicated by indirect jumps (none in our ILOC!)

```plaintext
foo:
    loadAI [bp-4] => r1
    cbr r1 => l1, l2
l1:
    loadI 5 => r2
    jump l3
l2:
    loadI 10 => r2
l3:
    storeAI r2 => [bp-4]
```
Static CFG Analysis

- Single block analysis is easy, and trees are too
- General CFGs are harder
 - Which branch of a conditional will execute?
 - How many times will a loop execute?
- How do we handle this?
 - One method: iterative data-flow analysis
 - Simulate all possible paths through a region of code
 - “Meet-over-all-paths” conservative solution
 - Meet operator combines information across paths
In general, a **semilattice** is a set of values L, special values \top (top) and \bot (bottom), and a **meet operator** \wedge such that

- $a \geq b$ iff $a \wedge b = b$
- $a > b$ iff $a \geq b$ and $a \neq b$
- $a \wedge \bot = \bot$ for all $a \in L$
- $a \wedge \top = a$ for all $a \in L$

Partial ordering
- Monotonic

Figure 9.22 from Dragon book: semilattice of definitions using \cup (set union) as the meet operation
Constant propagation

- For **sparse simple constant propagation (SSCP)**, the lattice is very shallow
 - $c_i \land \bot = \bot$ for all c_i
 - $c_i \land \top = c_i$ for all c_i
 - $c_i \land c_j = c_i$ if $c_i = c_j$
 - $c_i \land c_j = \bot$ if $c_i \neq c_j$

- Basically: each SSA value is either a known constant or it is a variable
 - Dataflow analysis propagates this information
Data-Flow Analysis

• Define properties of interest for basic blocks
 – Usually sets of blocks, variables, definitions, etc.
• Define a formula for how those properties change within a block
 – $F(B)$ is based on $F(A)$ where A is a predecessor or successor of B
 – This is basically the meet operator for a particular problem
• Specify initial information for all blocks
 – Entry/exit blocks usually have different values
• Run an iterative update algorithm to propagate changes
 – Keep running until the properties converge for all basic blocks
• Key concept: finite descending chain property
 – Properties must be monotonically increasing or decreasing
 – Otherwise, termination is not guaranteed
Data-Flow Analysis

- This kind of algorithm is called a fixed-point algorithm
 - It runs until it converges to a “fixed point”

- **Forward vs. backward data-flow analysis**
 - Forward: along graph edges (based on predecessors)
 - Backward: reverse of forward (based on successors)

- **Types of data-flow analysis**
 - Constant propagation
 - Dominance
 - Liveness
 - Available expressions
 - Reaching definitions
 - Anticipable expressions
Dominance

- Block A **dominates** block B if A is on every path from the entry to B
 - Block A **immediately** dominates block B if there are no blocks between them
 - Block B **postdominates** block A if B is on every path from A to an exit

- Simple dataflow analysis formulation
 - $\text{preds}(b)$ is the set of blocks that are predecessors of block b
 - $\text{Dom}(b)$ is the set of blocks that dominate block b
 - intersection of Dom for all immediate predecessors

Initial conditions: $\text{Dom}(\text{entry}) = \{\text{entry}\}$
$$\forall b \neq \text{entry}, \quad \text{Dom}(b) = \{\text{all blocks}\}$$

Updates: $\text{Dom}(b) = \{b\} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p)$
Liveness

• Variable \(v \) is live at point \(p \) if there is a path from \(p \) to a use of \(v \) with no intervening assignment to \(v \)
 - Useful for finding uninitialized variables (live at function entry)
 - Useful for optimization (remove unused assignments)
 - Useful for register allocation (keep live vars in registers)

• Initial information: \(UEVar \) and \(VarKill \)
 - \(UEVar(B) \): variables used in \(B \) before any redefinition in \(B \)
 • ("upwards exposed" variables)
 - \(VarKill(B) \): variables that are defined in \(B \)

• Textbook notation note: \(X \cap \overline{Y} = X - Y \)

Initial conditions: \(\forall b, \ LiveOut(b) = \emptyset \)

Updates: \(LiveOut(b) = \bigcup_{s \in succs(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s)) \)
Liveness example

(a) Code for the Basic Blocks

<table>
<thead>
<tr>
<th></th>
<th>B_0</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>B_6</th>
<th>B_7</th>
<th>B_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>$i \leftarrow 1$</td>
<td>$\rightarrow B_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>$a \leftarrow \cdots$</td>
<td>$\rightarrow B_2, B_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>$c \leftarrow \cdots$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>$d \leftarrow \cdots$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_3</td>
<td>$\rightarrow B_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>$y \leftarrow a + b$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>$z \leftarrow c + d$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>$i \leftarrow i + 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(i \leq 100)$</td>
<td>$\rightarrow B_1, B_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Control-Flow Graph

(c) Initial Information

$$\forall b, \quad \text{LiveOut}(b) = \emptyset \quad \text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s))$$
Alternative definition

• Define \textit{LiveIn} as well as \textit{LiveOut}
 – Two formulas for each basic block
 – Makes things a bit simpler to reason about
 • Separates change \textit{within} block from change \textit{between} blocks

\begin{align*}
\forall b, & \quad \text{LiveOut}(b) = \emptyset \\
\text{LiveIn}(b) = & \quad \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b)) \\
\text{LiveOut}(b) = & \quad \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s)
\end{align*}
Block orderings

- Forwards dataflow analyses converge faster with reverse postorder processing of CFG blocks
 - Visit as many of a block’s predecessors as possible before visiting that block
 - Strict reversal of normal postorder traversal
 - Similar to concept of topological sorting on DAGs
 - NOT EQUIVALENT to preorder traversal!
 - Backwards analyses should use reverse postorder on reverse CFG

Depth-first search:

- Valid preorderings:
 - A, B, D, C, A (left first)
 - A, C, D, B, A (right first)

- Valid postorderings:
 - D, B, C, A (left first)
 - D, C, B, A (right first)

- Valid reverse postorderings:
 - A, C, B, D
 - A, B, C, D
Summary

\[\text{Dom}(\text{entry}) = \{ \text{entry} \} \]
\[\forall b \neq \text{entry} , \quad \text{Dom}(b) = \{ \text{all blocks} \} \]
\[\text{Dom}(b) = \{ b \} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p) \]

\[\forall b , \quad \text{LiveOut}(b) = \emptyset \]
\[\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s)) \]

\[\forall b , \quad \text{LiveOut}(b) = \emptyset \]
\[\text{LiveIn}(b) = \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b)) \]
\[\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s) \]

Dominance

Liveness
(EAC version)

Liveness
(Dragon version)