Data-Flow Analysis
int main() {
 int x = 4 + 5;
 return x;
}
```c
int a;
a = 0;
while (a < 10) {
    a = a + 1;
}
```

```assembly
loadI 0 => r1
loadI 10 => r2
l1:
cmp_LT r1, r2 => r4
cbr r4 => l2, l3
l2:
addI r1, 1 => r1
jump l1
l3:
storeAI r1 => [bp-4]
loadI 10 => r1
storeAI r1 => [bp-4]
```
Optimization is Hard

• **Problem**: it's hard to reason about all possible executions
 - Preconditions and inputs may differ
 - Optimizations should be correct and efficient in all cases
• Optimization tradeoff: investment vs. payoff
 - "Better than naïve" is fairly easy
 - "Optimal" is impossible
 - Real world: somewhere in between
 • Better speedups with more static analysis
 • Usually worth the added compile time
• Also: linear IRs (e.g., ILOC) don't explicitly expose control flow
 - This makes analysis and optimization difficult
Control-Flow Graphs

• Basic blocks
 - "Maximal-length sequence of branch-free code"
 - "Atomic" sequences (instructions that always execute together)

• Control-flow graph (CFG)
 - Nodes/vertices for basic blocks
 - Edges for control transfer
 • Branch/jump instructions (explicit) or fallthrough (implicit)
 • \(p \) is a predecessor of \(q \) if there is a path from \(p \) to \(q \)
 - \(p \) is an immediate predecessor if there is an edge directly from \(p \) to \(q \)
 • \(q \) is a successor of \(p \) if there is a path from \(p \) to \(q \)
 - \(a \) is an immediate successor if there is an edge directly from \(p \) to \(q \)
Control-Flow Graphs

• Conversion: linear IR to CFG
 - Find leaders (initial instruction of a basic block) and build blocks
 • Every call or jump target is a leader
 - Add edges between blocks based on branches and fallthrough
 - Complicated by indirect jumps (none in our ILOC!)

```
foo:
  loadAI [bp-4] => r1
  cbr r1 => l1, l2
l1:
  loadI 5 => r2
  jump l3
l2:
  loadI 10 => r2
l3:
  storeAI r2 => [bp-4]
```
Static CFG Analysis

• Single block analysis is easy, and trees are too
• General CFGs are harder
 – Which branch of a conditional will execute?
 – How many times will a loop execute?
• How do we handle this?
 – One method: iterative data-flow analysis
 – Simulate all possible paths through a region of code
 – “Meet-over-all-paths” conservative solution
 – Meet operator combines information across paths
In general, a **semilattice** is a set of values L, special values \top (top) and \bot (bottom), and a meet operator \land such that

- $a \geq b$ iff $a \land b = b$
- $a > b$ iff $a \geq b$ and $a \neq b$
- $a \land \top = a$ for all $a \in L$
- $a \land \bot = \bot$ for all $a \in L$

Partial ordering
- Monotonic

Figure 9.22 from Dragon book: semilattice of definitions using \cup (set union) as the meet operation
Constant propagation

- For **sparse simple constant propagation (SSCP)**, the lattice is very shallow
 - $c_i \land T = c_i$ for all c_i
 - $c_i \land \bot = \bot$ for all c_i
 - $c_i \land c_j = c_i$ if $c_i = c_j$
 - $c_i \land c_j = \bot$ if $c_i \neq c_j$

- Basically: each SSA value is either unknown (\top), a known constant (c_i), or it is a variable (\bot)
 - Initialize to unknown (\top) for all SSA values
 - Interpret operations over lattice values (always lowering)
 - Propagate information until convergence
Data-Flow Analysis

- Define **properties** of interest for basic blocks
 - Usually **sets** of blocks, variables, definitions, etc.
- Define a **formula** for how those properties change within a block
 - $F(B)$ is based on $F(A)$ where A is a predecessor or successor of B
 - This is basically the meet operator for a particular problem
- Specify **initial information** for all blocks
 - Entry/exit blocks usually have different values
- Run an **iterative update** algorithm to propagate changes
 - Keep running until the properties converge for all basic blocks
- Key concept: **finite descending chain property**
 - Properties must be monotonically increasing or decreasing
 - Otherwise, termination is not guaranteed
Data-Flow Analysis

- This kind of algorithm is called a **fixed-point algorithm**
 - It runs until it converges to a “fixed point”
- **Forward vs. backward data-flow analysis**
 - Forward: along graph edges (based on predecessors)
 - Backward: reverse of forward (based on successors)
- **Types of data-flow analysis**
 - Constant propagation
 - Dominance
 - Liveness
 - Available expressions
 - Reaching definitions
 - Anticipable expressions
Dominance

• Block A **dominates** block B if A is on every path from the entry to B
 - Block A **immediately** dominates block B if there are no blocks between them
 - Block B **postdominates** block A if B is on every path from A to an exit
 - Every block both dominates and postdominates itself

• Simple dataflow analysis formulation
 - \(\text{preds}(b) \) is the set of blocks that are predecessors of block b
 - \(\text{Dom}(b) \) is the set of blocks that dominate block b
 • intersection of \(\text{Dom} \) for all immediate predecessors
 - \(\text{PostDom}(b) \) is the set of blocks that postdominate block b
 • (similar definition using \(\text{succs}(b) \))

Initial conditions: \(\text{Dom(entry)} = \{ \text{entry} \} \)
\[
\forall b \neq \text{entry}, \quad \text{Dom}(b) = \{ \text{all blocks} \}
\]

Updates: \(\text{Dom}(b) = \{ b \} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p) \)
Liveness

- Variable \(\nu \) is live at point \(p \) if there is a path from \(p \) to a use of \(\nu \) with no intervening assignment to \(\nu \)
 - Useful for finding uninitialized variables (live at function entry)
 - Useful for optimization (remove unused assignments)
 - Useful for register allocation (keep live vars in registers)
- Initial information: \(UEVar \) and \(VarKill \)
 - \(UEVar(B) \): variables used in \(B \) before any redefinition in \(B \)
 - (“upwards exposed” variables)
 - \(VarKill(B) \): variables that are defined in \(B \)
- Textbook notation note: \(X \cap \overline{Y} = X - Y \)

Initial conditions: \(\forall b, \; LiveOut(b) = \emptyset \)

Updates: \(LiveOut(b) = \bigcup_{s \in \text{succs}(b)} UEVar(s) \cup (LiveOut(s) - VarKill(s)) \)
Liveness example

(a) Code for the Basic Blocks

\[
\begin{align*}
B_0: & \quad \text{i} \leftarrow 1 \\
& \quad \rightarrow B_1 \\
B_1: & \quad \text{a} \leftarrow \ldots \\
& \quad \text{c} \leftarrow \ldots \\
& \quad (\text{a} < \text{c}) \rightarrow B_2, B_5 \\
B_2: & \quad \text{b} \leftarrow \ldots \\
& \quad \text{c} \leftarrow \ldots \\
& \quad \text{d} \leftarrow \ldots \\
& \quad \rightarrow B_3 \\
B_3: & \quad \text{y} \leftarrow \text{a} + \text{b} \\
& \quad \text{z} \leftarrow \text{c} + \text{d} \\
& \quad \text{i} \leftarrow \text{i} + 1 \\
& \quad (i \leq 100) \rightarrow B_1, B_4 \\
B_4: & \quad \text{return} \\
B_5: & \quad \text{a} \leftarrow \ldots \\
& \quad \text{d} \leftarrow \ldots \\
& \quad (\text{a} \leq \text{d}) \rightarrow B_6, B_8 \\
B_6: & \quad \text{d} \leftarrow \ldots \\
& \quad \rightarrow B_7 \\
B_7: & \quad \text{b} \leftarrow \ldots \\
& \quad \rightarrow B_3 \\
B_8: & \quad \text{c} \leftarrow \ldots \\
& \quad \rightarrow B_7 \\
B_0 & \quad \rightarrow B_1 \\
B_1 & \quad \rightarrow B_2, B_5 \\
B_2 & \quad \rightarrow B_3 \\
B_3 & \quad \rightarrow B_1, B_4 \\
B_4 & \quad \rightarrow B_0 \\
B_5 & \quad \rightarrow B_6, B_8 \\
B_6 & \quad \rightarrow B_7 \\
B_7 & \quad \rightarrow B_3, B_8 \\
B_8 & \quad \rightarrow B_7
\end{align*}
\]

(b) Control-Flow Graph

(c) Initial Information

<table>
<thead>
<tr>
<th></th>
<th>B_0</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>B_6</th>
<th>B_7</th>
<th>B_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>UEVAR</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{a, b, c, d, i}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>VARKILL</td>
<td>{i}</td>
<td>{a, c}</td>
<td>{b, c, d}</td>
<td>{y, z, i}</td>
<td>\emptyset</td>
<td>{a, d}</td>
<td>{d}</td>
<td>{b}</td>
<td>{c}</td>
</tr>
</tbody>
</table>

\forall b, \quad \text{LiveOut}(b) = \emptyset \quad \text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKil}(s))
Alternative definition

- Define \(\text{LiveIn} \) as well as \(\text{LiveOut} \)
 - Two formulas for each basic block
 - Makes things a bit simpler to reason about
 - Separates change \textit{within} block from change \textit{between} blocks

\[
\forall b, \quad \text{LiveIn}(b) = \emptyset, \quad \text{LiveOut}(b) = \emptyset
\]

\[
\text{LiveIn}(b) = \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b))
\]

\[
\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s)
\]
Block orderings

- Forwards dataflow analyses converge faster with reverse postorder processing of CFG blocks
 - Visit as many of a block’s predecessors as possible before visiting that block
 - Strict reversal of normal postorder traversal
 - Similar to concept of topological sorting on DAGs
 - NOT EQUIVALENT to preorder traversal!
 - Backwards analyses should use reverse postorder on reverse CFG

Depth-first search:
- A, B, D, B, A, C, A (left first)
- A, C, D, C, A, B, A (right first)

Valid postorderings:
- D, B, C, A (left first)
- D, C, B, A (right first)

Valid preorderings:
- A, B, D, C (left first)
- A, C, D, B (right first)

Valid reverse postorderings:
- A, C, B, D
- A, B, C, D
Summary

\(\text{Dom}(\text{entry}) = \{ \text{entry} \} \)
\(\forall b \neq \text{entry}, \text{Dom}(b) = \{ \text{all blocks} \} \)

\(\text{Dom}(b) = \{ b \} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p) \)

\(\forall b, \text{LiveOut}(b) = \emptyset \)

\(\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s)) \)
(Dominance)

\(\forall b, \text{LiveIn}(b) = \emptyset, \text{LiveOut}(b) = \emptyset \)

\(\text{LiveIn}(b) = \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b)) \)
\(\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s) \)
(Liveness (EAC version))

\(\forall b, \text{LiveOut}(b) = \emptyset \)

\(\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s)) \)
(Liveness (Dragon version))