Finite Automata Conversions and Lexing
Key result: all of the following have the same expressive power (i.e., they all describe regular languages):

- Regular expressions (REs)
- Non-deterministic finite automata (NFAs)
- Deterministic finite automata (DFAs)

Proof by construction

- An algorithm exists to convert any RE to an NFA
- An algorithm exists to convert any NFA to a DFA
- An algorithm exists to convert any DFA to an RE
- For every regular language, there exists a minimal DFA

 • Has the fewest number of states of all DFAs equivalent to RE
Finite Automata

- Finite automata transitions:

 - Thompson's construction
 - Kleene's construction
 - Hopcroft's algorithm (minimize)
 - Subset construction
 - Brzozowski's algorithm (direct to minimal DFA)
 - Lexer generators

(dashed lines indicate transitions to a minimized DFA)
Finite Automata Conversions

- **RE to NFA:** Thompson's construction
 - Core insight: *inductively* build up NFA using “templates”
 - Core concept: use *null transitions* to build NFA quickly

- **NFA to DFA:** Subset construction
 - Core insight: DFA nodes represent *subsets* of NFA nodes
 - Core concept: use *null closure* to calculate subsets

- **DFA minimization:** Hopcroft’s algorithm
 - Core insight: create *partitions*, then keep splitting

- **DFA to RE:** Kleene's construction
 - Core insight: repeatedly eliminate states by *combining* regexes
Thompson's Construction

• Basic idea: create NFA inductively, bottom-up
 – Base case:
 • Start with individual alphabet symbols (see below)
 – Inductive case:
 • Combine by adding new states and null/epsilon transitions
 • Templates for the three basic operations
 – Invariant:
 • The NFA always has exactly one start state and one accepting state
Thompson's: Concatenation
Thompson's: Concatenation

AB
Thompson's: Union

A

\[q_A \rightarrow \rightarrow f_A \]

B

\[q_B \rightarrow \rightarrow f_B \]
Thompson's: Union

A|B

S0 -> qA -> fA
S0 -> qB -> fB
S1

ε

A β B
Thompson's: Closure
Thompson's: Closure
Thompson's Construction

Base case

Concatenation

Union

Closure
Basic idea: create DFA incrementally
- Each DFA state represents a subset of NFA states
- Use null closure operation to “collapse” null/epsilon transitions
- Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go “for free?”
 - Formally: ϵ-closure(s) = $\{s\} \cup \{ t \in S \mid (s,\epsilon \rightarrow t) \in \delta \}$
- Simulates running all possible paths through the NFA

Null closure of A = {A}
Null closure of B = {B, D}
Null closure of C =
Null closure of D =
Subset construction

• Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to “collapse” null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 • Essentially: where can we go “for free?”
 • Formally: ε-closure$(s) = \{ s \} \cup \{ t \in S \mid (s, \varepsilon \rightarrow t) \in \delta \}$
 - Simulates running all possible paths through the NFA

Null closure of $A = \{ A \}$
Null closure of $B = \{ B, D \}$
Null closure of $C = \{ C, D \}$
Null closure of $D = \{ D \}$
Subset construction

- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to “collapse” null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go “for free?”
 - Formally: ε-closure(s) = \{s\} \cup \{ t \in S $|$ (s, ε \rightarrow t) \in δ \}
 - Simulates running all possible paths through the NFA

Null closure of A = \{ A \}
Null closure of B = \{ B, D \}
Null closure of C = \{ C, D \}
Null closure of D = \{ D \}
Formal Algorithm

SubsetConstruction(S, Σ, s₀, S_A, δ):

\[t₀ := \varepsilon\text{-closure}(s₀) \]
\[S' := \{ t₀ \} \quad S'_A := \emptyset \quad W := \{ t₀ \} \]

while \(W \neq \emptyset \):

choose \(u \) in \(W \) and remove it from \(W \)

for each \(c \) in \(Σ \):

\[t := \varepsilon\text{-closure}(δ(u,c)) \]
\[δ'(u,c) = t \]

if \(t \) is not in \(S' \) then

add \(t \) to \(S' \) and \(W \)

add \(t \) to \(S'_A \) if any state in \(t \) is also in \(S_A \)

return \((S', Σ, t₀, S'_A, δ')\)
Subset Example

A graph showing nodes A, B, C, and D with edges labeled a, b, and ε.
Subset Example
Subset Example

\[
\{A\}
\rightarrow a \rightarrow \{B, D\} \\
\{C, D\}
\rightarrow b \rightarrow A
\]
SubsetConstruction(S, Σ, s_0, S_A, δ):

$t_0 := \varepsilon$-closure(s_0)

$S' := \{ t_0 \} \quad S'_A := \emptyset \quad W := \{ t_0 \}$

while $W \neq \emptyset$:

choose u in W and remove it from W

for each c in Σ:

$t := \varepsilon$-closure($\delta(u,c)$)

$\delta'(u,c) = t$

if t is not in S' then

add t to S' and W

add t to S'_A if there exists a state v in t that is also in S_A

return (S', Σ, t_0, S'_A, δ')
Subset Example
• Subset construction is a **fixed-point** algorithm
 - Textbook: “Iterated application of a monotone function”
 - Basically: A loop that is mathematically guaranteed to terminate at some point
 - When it terminates, some desirable property holds
 • In the case of subset construction: the NFA has been converted to a DFA!
Hopcroft’s DFA Minimization

- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with **differing behaviors**
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn’t
- When done, each partition becomes a single state

![Diagram of DFA Minimization Process]
Hopcroft’s DFA Minimization

- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with differing behaviors
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn’t
- When done, each partition becomes a single state
Kleene's Construction

- Replace edge labels with REs
 - "a" → "a" and "a,b" → "a|b"
- Eliminate states by combining REs
 - See pattern below; apply pairwise around each state to be eliminated
 - Repeat until only one or two states remain
- Build final RE
 - One state with "A" self-loop → "A*"
 - Two states: see pattern below

Eliminating states:

Combining final two states:
Brzozowski’s Algorithm

• Direct NFA → minimal DFA conversion
• Sub-procedures:
 − \textbf{Reverse}(n): invert all transitions in NFA n, adding a new start state connected to all old final states
 − \textbf{Subset}(n): apply subset construction to NFA n
 − \textbf{Reach}(n): remove any part of NFA n unreachable from start state
• Apply them all in order three times to get minimal DFA
 − First time eliminates duplicate suffixes
 − Second time eliminates duplicate prefixes
 − \text{MinDFA}(n) = \text{Reach}(\text{Subset}(\text{Reverse}(\text{Reach}(\text{Subset}(\text{Reverse}(n))))))$
 − Potentially easier to code than Hopcroft’s algorithm
Brzozowski’s Algorithm

- \(\text{MinDFA}(n) = \text{Reach}(\text{Subset}(\text{Reverse}(\text{Reach}(\text{Subset}(\text{Reverse}(n)))))) \)

Example from EAC (p.76)
NFA/DFA complexity

- What are the time and space requirements to...
 - Build an NFA?
 - Run an NFA?
 - Build a DFA?
 - Run a DFA?

\[\varepsilon \{A\} \]
\[\{B,D\} \]
\[\{C,D\} \]
\[a^* | b \]
NFA/DFA complexity

- Thompson's construction
 - At most two new states and four transitions per regex character
 - Thus, a linear space increase with respect to the # of regex characters
 - Constant # of operations per increase means linear time as well

- NFA execution
 - Proportional to both NFA size and input string size
 - Must track multiple simultaneous “current” states

- Subset construction
 - Potential exponential state space explosion
 - A n-state NFA could require up to 2^n DFA states
 - However, this rarely happens in practice

- DFAs execution
 - Proportional to input string size only (only track a single “current” state)
NFA/DFA complexity

- NFAs build quicker (linear) but run slower
 - Better if you will only run the FA a few times
 - Or if you need features that are difficult to implement with DFAs
- DFAs build slower but run faster (linear)
 - Better if you will run the FA many times

<table>
<thead>
<tr>
<th></th>
<th>NFA</th>
<th>DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build time</td>
<td>$O(m)$</td>
<td>$O(2^m)$</td>
</tr>
<tr>
<td>Run time</td>
<td>$O(m \times n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

$m = \text{length of regular expression}$

$n = \text{length of input string}$
Lexing/Scanning w/ DFAs

• One approach:
 – Combine all regexes and build one DFA
 – Run DFA on input until there is no outgoing edge on a character
 • If current state is accepting, generate token and restart
 • Otherwise, back up to most recent accepting state then generate token and restart (if no accepting states were passed, report error)

• Another approach (PA2):
 – Build a DFA for each regex
 – Run each DFA in sequence in priority order on input until there is no outgoing edge on a character
 • If current state is accepting, generate token and restart
 • Otherwise, run the next DFA (if no more DFAs, report error)
Lexers

• Auto-generated
 – Table-driven: generic scanner, auto-generated tables
 – Direct-coded: hard-code transitions using jumps
 – Common tools: lex/flex and similar

• Hand-coded
 – Better I/O performance (i.e., buffering)
 – More efficient interfacing w/ other phases
 – This is what we’ll do for P2
Handling Keywords

- Issue: keywords are valid identifiers
- Option 1: Embed into NFA/DFA
 - Separate regex for keywords
 - Easier/faster for generated scanners
- Option 2: Use lookup table
 - Scan as identifier then check for a keyword
 - Easier for hand-coded scanners
 - (Thus, this is probably easier for P2)
Handling Whitespace

• Issue: whitespace is usually ignored
 – Write a regex and remove it before each new token

• Side effect: some results are counterintuitive
 – Is this a valid token? “3abc”
 – For now, it’s actually two!
 – We’ll reject them later, in the parsing phase