CS 432 Fall 2019

Mike Lam, Professor

a|(bc)*

Regular Expressions and Finite Automata

Compilation

- Lexemes or tokens: the smallest building blocks of a language's syntax
- Lexing or scanning: the process of separating a character stream into tokens

```
total = sum(vals) / n
                                   char *str = "hi";
total
          identifier
                                   char
                                             keyword
          equals_op
                                             star_op
          identifier
                                             identifier
sum
                                   str
          left_paren
                                             equals_op
vals
          identifier
                                   "hi"
                                             str_literal
          right_paren
                                             semicolon
          divide_op
          identifier
```

Discussion question

• What is a *language*?

Language

 A language is "a (potentially infinite) set of strings over a finite alphabet"

Discussion question

How do we describe languages?

xyy	
xy	
xyyzzz	
xyz	
xyzz	
xyyzz	
xyyz	
XYZZZ	
(etc.)	

```
xy
xyy
xyz
xyyz
xyzz
xyyzz
xyzzz
xyyzzz
(etc.)
```

xy	хуу
xyz	xyyz
XYZZ	XYYZZ
xyzzz (etc.)	xyyzzz

Language description

- Ways to describe languages
 - Ad-hoc prose
 - "A single 'x' followed by one or two 'y's followed by any number of 'z's"
 - Formal regular expressions (current focus)
 - x(y|yy)z*
 - Formal grammars (in two weeks)
 - A → x B C
 - B → y | y y
 - $C \rightarrow Z C \mid \epsilon$

Languages

Chomsky Hierarchy of Languages

- Alphabet:
 - Σ = { finite set of all characters }
- Language:
 - L = { potentially infinite set of sequences of characters from Σ }

Regular expressions

- Regular expressions describe regular languages
 - Can also be thought of as generalized search patterns
- Three basic recursive operations:

- Alternation: a|b Lowest precedence

Concatenation: ab

- ("Kleene") Closure: a* Highest precedence

Additionally: ϵ is a regex that matches the empty string

- Extended constructs:
 - Character sets/classes: $[0-9] \equiv [0...9] \equiv 0|1|2|3|4|5|6|7|8|9$
 - Positive closure: $a^2 \equiv aa$ $a^3 \equiv aaa$ $a+ \equiv aa^*$
 - Grouping: $(a|b)c \equiv ac|bc$

Discussion question

- How would you implement regular expressions?
 - Given a regular expression and a string, how would you tell whether the string belongs to the language described by the regular expression?

- Implemented using state machines (finite state automata)
 - Set of states with a single start state
 - Transitions between states on inputs (w/ implicit dead states)
 - Some states are final or accepting

- Deterministic vs. non-deterministic
 - Non-deterministic: multiple possible states for given sentence
 - One edge from each state per character (deterministic)
 - Multiple edges from each state per character (non-deterministic)
 - Empty or ε-transitions (non-deterministic)

Deterministic (DFA)

Non-deterministic (NFA)

Deterministic finite automata

Formal definition

S: set of states

 Σ : alphabet (set of characters)

 δ : transition function: (S, Σ) \rightarrow S

s₀: start state

 S_A : accepting/final states

Acceptance algorithm

$$s := s_0$$

for each input c:

$$s := \delta(s,c)$$

return $s \in S_A$

$$S = \{ s1, s2 \}$$

 $\Sigma = \{ a \}$
 $\delta = \{ (s1, a \rightarrow s2), (s2, a \rightarrow \emptyset) \}$
 $s_{0:} = s1$
 $S_{\Delta} = \{ s2 \}$

Alternative δ representation:

	a
s1	s2
s2	Ø

Non-deterministic finite automata

- Formal Definition
 - S, Σ , s₀, and S_A same as DFA
 - δ: (S, Σ ∪ {ε}) \rightarrow [S]
 - ε-closure: all states reachable from s via ε-transitions
 - Formally: ϵ -closure(s) = {s} \cup { t \in S | (s, ϵ) \rightarrow t \in δ }
 - Extended to sets by union over all states in set
- Acceptance algorithm

```
T := \varepsilon-closure(s_0)

for each input c:

N := \{\}

for each s in T:

N := N \cup \varepsilon-closure(\delta(s,c))

T := N

return |T \cap S_A| > 0
```

Summary

DFAs

- S: set of states
- Σ: alphabet (set of characters)
- δ : transition function: (S, Σ) \rightarrow S
- s₀: start state
- S_A: accepting/final states

accept():

$$s := s_0$$

for each input c:

$$s := \delta(s,c)$$

return $s \in S_A$

NFAs

- δ may return a set of states
- δ may contain ϵ -transitions
- δ may contain transitions to multiple states on a symbol

accept():

```
T := \varepsilon-closure(s_0)
```

for each input c:

$$N := \{\}$$

for each s in T:

$$N := N \cup \varepsilon$$
-closure($\delta(s,c)$)

$$T := N$$

return
$$|T \cap S_A| > 0$$

• Examples:

Equivalence

- A regular expression and a finite automaton are equivalent if they recognize the same language
 - Same applies between different REs and between different FAs
- Regular expressions, NFAs, and DFAs all describe the same set of languages
 - "Regular languages" from Chomsky hierarchy
- Next week, we will learn how to convert between them

Application

- PA2: Use Java regular expressions to tokenize Decaf files
 - Process the input one line at a time
 - Generally, create one regex per token type
 - Each regex begins with "^" (only match from beginning)
 - Prioritize regexes and try each of them in turn
 - When you find a match, extract the matching text
 - Repeat until no match is found or input is consumed
 - Less efficient than an auto-generated lexer
 - However, it is simpler to understand
 - Our approach to PA3 will be similar

Source code

Tokens

char data[20];
int main() {
 float x
 = 42.0;
 return 7;
}

Examples

Unsigned integers

$$0 | [1...9] [0...9]^*$$

Identifiers

$$([A...Z] | [a...z]) ([A...Z] | [a...z] | [0...9])^*$$

Multi-line comments

Exercise

 Construct state machines for the following regular expressions:

```
x*yz* 1(1|0)* 1(10)* (a|b|c)(ab|bc)

(dd*.d*)|(d*.dd*) \leftarrow ε-transitions may make this one slightly easier
```