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List Scheduling



I Instruction Scheduling

* Modern architectures expose many opportunities for optimization

— Some instructions require fewer cycles

— Superscalar processing (multiple functional units)

— Instruction pipelining
— Speculative execution

* Primary obstacle: data dependencies

- Astall is a delay caused by having to wait for an operand to load
* Scheduling: re-order instructions to improve performance

- Maximize utilization and prevent stalls
— Must not modify program semantics
— Main algorithm: list scheduling
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https://en.wikipedia.org/wiki/Superscalar_processor



I Example

* Which program is preferable? v

» Assumptions: el Lz
- Loads and stores have a 3-cycle latency | ré4 | rs
- Multiplications have a 2-cycle latency }ﬁ
— All other instructions have a 1-cycle latency
1 loadAI [BP-4] => r1 1 loadAI [BP-4] => r1
4 add r1, r1 => r2 2 loadAI [BP-8] => r3
5 loadAI [BP-8] => r3 3 loadAI [BP-12] => r5
8 mult r2, r3 =>r4 4 add ri1, r1 => r2
9 loadAI [BP-12] => r5 5 mult r2, r3 == r4
12 mult r4, r5 => ré6 6 loadAI [BP-16] => r7
13 loadAI [BP-16] => r7 7  mult r4, r5 => ré6
16 mult r6, r7 =>r8 9 mult r6, r7 => r8
18 store AI r8 => [BP-20] 11 store AI r8 => [BP-20]



I Data Dependence

e Data dependency (x=_,_ =X)

- Read after write

- Hard constraint
* Antidependency (_ =x; X =_)

- Write after read

— Can rename to avoid (could require more register spills)
 Dependency graph

— One for each basic block
* Could have multiple roots; technically a forest of directed acyclic graphs (DAGS)
- Nodes for each instruction

- Edges represent data dependencies
 Edge (n,, n,) means that n, uses a result of n,
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Jl List Scheduling

* Prep work

- Rename to avoid antidependencies
- Build data dependence graph

— Assign priority for each instruction
» Usually based on node height and instruction latency
» Goal: prioritize instructions on the critical path

* |teratively build new schedule

- Track a set of "ready" instructions
* No remaining unresolved data dependencies; i.e., can be issued
- For each cycle:

* Check all currently executing instructions for any that have finished
- Add any new "ready" dependents to set
» Start executing a new "ready" instruction (if there are any)
- Greedy algorithm: if multiple instructions are ready, choose the one with the highest priority



I Example

. a | C g
* Schedule the following code: v v
b | [d
- Loads and stores have a 3-cycle latency
— Multiplications have a 2-cycle latency
. . f
- All other instructions have a 1-cycle latency
[1] a) loadAI [BP-4] => r2 [1] c) loadAI [BP-12] => r3
[4] b) storeAl r2 => [BP-8] [2] a) loadAI [BP-4] => r2
[5] c) loadAI [BP-12] => r3 [3] g) storeAl r7 => [BP-20]
[8] d) add r3, r4 => r3 [4] d) add r3, r4 => r3
[9] e) add r3, r2 => r3 [5] e) add r3, r2 => r3
[10] f) storeAl r3 => [BP-16] [6] f) storeAl r3 => [BP-16]

[11] g) storeAl r7 => [BP-20] [7] b) storeAl r2 => [BP-8]



I Example

* Schedule this program from earlier

* Assumptions:

- Loads and stores have a 3-cycle latency
— Multiplications have a 2-cycle latency
— All other instructions have a 1-cycle latency

loadAI [BP-4] => r1
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
store AI r8 => [BP-20]




I Instruction Priorities

* Usually based on node height and latency first
— Minimizes critical path
 Many methods for tie-breaking

- Node's rank (# of successors; breadth-first search)
— Node's descendant count

- Latency (maximize resource efficiency)

— Resource ordering (maximize resource efficiency)
— Source code ordering (minimize reordering)

- No clear winner here!



I Tradeoffs

* Instruction scheduling vs. register allocation

- Fewer registers — more sequential code
- More registers — more possibilities for parallelism
- Scheduling can also impact number of spills/loads

* Forward vs. backward list scheduling

- Backward scheduling: build schedule in reverse

* Choose last instruction on critical path first
* Schedule from roots to leaves instead of leaves to roots
* Similar to backward data flow analysis

— List scheduling is cheap; just run several variants to see
which works better for particular code segments



I Regional scheduling

* Usually based on local list scheduling

* Extended using various techniques

- Analyze extended basic blocks (chains of basic blocks)
— Detect hot traces or paths using profile information

- Sometimes need to insert compensation code

- Sometimes need to clone entire blocks

* Particularly important for loops

— Focus on core kernel of the loop
— Constrained by loop-carried dependencies
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