- 'rlht;-'-.-.wwﬁr“-“-u;“dn.-.rhn--im_uﬁuu el

CS 482 meneming
Fall 2018 e e

NSCC 2012 0| amme e

Mike Lam, Professor === =====

https://xkcd.com/1542/

List Scheduling

I Instruction Scheduling

* Modern architectures expose many opportunities for optimization

— Some instructions require fewer cycles

— Superscalar processing (multiple functional units)

— Instruction pipelining
— Speculative execution

* Primary obstacle: data dependencies

- Astall is a delay caused by having to wait for an operand to load
* Scheduling: re-order instructions to improve performance

- Maximize utilization and prevent stalls
— Must not modify program semantics
— Main algorithm: list scheduling

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

|i

t

—

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

IE

ID

EX

MEM

WB

Ik

ID

EX

MEM

WB

https://en.wikipedia.org/wiki/Superscalar_processor

I Example

* Which program is preferable? v

» Assumptions: el Lz
- Loads and stores have a 3-cycle latency | ré4 | rs
- Multiplications have a 2-cycle latency }ﬁ
— All other instructions have a 1-cycle latency
1 loadAI [BP-4] => r1 1 loadAI [BP-4] => r1
4 add r1, r1 => r2 2 loadAI [BP-8] => r3
5 loadAI [BP-8] => r3 3 loadAI [BP-12] => r5
8 mult r2, r3 =>r4 4 add ri1, r1 => r2
9 loadAI [BP-12] => r5 5 mult r2, r3 == r4
12 mult r4, r5 => ré6 6 loadAI [BP-16] => r7
13 loadAI [BP-16] => r7 7 mult r4, r5 => ré6
16 mult r6, r7 =>r8 9 mult r6, r7 => r8
18 store AI r8 => [BP-20] 11 store AI r8 => [BP-20]

I Data Dependence

e Data dependency (x=_,_ =X)

- Read after write

- Hard constraint
* Antidependency (_ =x; X =_)

- Write after read

— Can rename to avoid (could require more register spills)
 Dependency graph

— One for each basic block
* Could have multiple roots; technically a forest of directed acyclic graphs (DAGS)
- Nodes for each instruction

- Edges represent data dependencies
 Edge (n,, n,) means that n, uses a result of n,

Ol

A

Jl List Scheduling

* Prep work

- Rename to avoid antidependencies
- Build data dependence graph

— Assign priority for each instruction
» Usually based on node height and instruction latency
» Goal: prioritize instructions on the critical path

* |teratively build new schedule

- Track a set of "ready" instructions
* No remaining unresolved data dependencies; i.e., can be issued
- For each cycle:

* Check all currently executing instructions for any that have finished
- Add any new "ready" dependents to set
» Start executing a new "ready" instruction (if there are any)
- Greedy algorithm: if multiple instructions are ready, choose the one with the highest priority

I Example

. a | C g
* Schedule the following code: v v
b | [d
- Loads and stores have a 3-cycle latency
— Multiplications have a 2-cycle latency
. . f
- All other instructions have a 1-cycle latency
[1] a) loadAI [BP-4] => r2 [1] c) loadAI [BP-12] => r3
[4] b) storeAl r2 => [BP-8] [2] a) loadAI [BP-4] => r2
[5] c) loadAI [BP-12] => r3 [3] g) storeAl r7 => [BP-20]
[8] d) add r3, r4 => r3 [4] d) add r3, r4 => r3
[9] e) add r3, r2 => r3 [5] e) add r3, r2 => r3
[10] f) storeAl r3 => [BP-16] [6] f) storeAl r3 => [BP-16]

[11] g) storeAl r7 => [BP-20] [7] b) storeAl r2 => [BP-8]

I Example

* Schedule this program from earlier

* Assumptions:

- Loads and stores have a 3-cycle latency
— Multiplications have a 2-cycle latency
— All other instructions have a 1-cycle latency

loadAI [BP-4] => r1
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
store AI r8 => [BP-20]

I Instruction Priorities

* Usually based on node height and latency first
— Minimizes critical path
 Many methods for tie-breaking

- Node's rank (# of successors; breadth-first search)
— Node's descendant count

- Latency (maximize resource efficiency)

— Resource ordering (maximize resource efficiency)
— Source code ordering (minimize reordering)

- No clear winner here!

I Tradeoffs

* Instruction scheduling vs. register allocation

- Fewer registers — more sequential code
- More registers — more possibilities for parallelism
- Scheduling can also impact number of spills/loads

* Forward vs. backward list scheduling

- Backward scheduling: build schedule in reverse

* Choose last instruction on critical path first
* Schedule from roots to leaves instead of leaves to roots
* Similar to backward data flow analysis

— List scheduling is cheap; just run several variants to see
which works better for particular code segments

I Regional scheduling

* Usually based on local list scheduling

* Extended using various techniques

- Analyze extended basic blocks (chains of basic blocks)
— Detect hot traces or paths using profile information

- Sometimes need to insert compensation code

- Sometimes need to clone entire blocks

* Particularly important for loops

— Focus on core kernel of the loop
— Constrained by loop-carried dependencies

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

