Compilers

```
char data[20];
int main() {
  float x = 42.0;
  return 7;
}
```

Source code

Lexing

Tokens

Parsing

"Front end"

Syntax tree

Code Generation & Optimization

"Back end"

Machine code

Current focus
```
int a;
a = 0;
while (a < 10) {
    a = a + 1;
}
```

```
loadI 0 => r1
loadI 10 => r2
l1:
cmp_LT r1, r2 => r4
cbr r4 => l2, l3
l2:
addI r1, 1 => r1
jump l1
l3:
storeAI r1 => [bp-4]
loadI 10 => r1
storeAI r1 => [bp-4]
```
Optimization is Hard

- **Problem**: it's hard to reason about all possible executions
 - Preconditions and inputs may differ
 - Optimizations should be correct and efficient in all cases
 - Consider this code:
    ```
    int *p; cin >> p; *p = 42;
    ```
- **Optimization tradeoff**: investment vs. payoff
 - "Better than naïve" is fairly easy
 - "Optimal" is impossible
 - Real world: somewhere in between
 - Better speedups with more static analysis
 - Usually worth the added compile time
- **Also**: linear IRs (e.g., ILOC) don't explicitly expose control flow
 - This makes analysis and optimization difficult
Control-Flow Graphs

- **Basic blocks**
 - "Maximal-length sequence of branch-free code"
 - "Atomic" sequences (instructions that always execute together)

- **Control-flow graph** (CFG)
 - Nodes/vertices for basic blocks
 - Edges for control transfer
 - Branch/jump instructions (explicit) or fallthrough (implicit)
 - p is a **predecessor** of q if there is a path from p to q
 - p is an **immediate** predecessor if there is an edge directly from p to q
 - q is a **successor** of p if there is a path from p to q
 - a is an **immediate** successor if there is an edge directly from p to q
Control-Flow Graphs

- Conversion: linear IR to CFG
 - Find leaders (initial instruction of a basic block) and build blocks
 - Every call or jump target is a leader
 - Add edges between blocks based on branches and fallthrough
 - Complicated by indirect jumps (none in our ILOC!)

```plaintext
foo:
  loadAI [bp-4] => r1
  cbr r1 => l1, l2
l1:
  loadI 5 => r2
  jump l3
l2:
  loadI 10 => r2
l3:
  storeAI r2 => [bp-4]
```

```
loadAI [bp-4] => r1
cbr r1 => l1, l2
loadI 5 => r2
loadI 10 => r2
storeAI r2 => [bp-4]
```
Static CFG Analysis

- Single block analysis is easy, and trees are too
- General CFGs are harder
 - Which branch of a conditional will execute?
 - How many times will a loop execute?
- How do we handle this?
 - One method: iterative data-flow analysis
 - Simulate all possible paths through a region of code
 - “Meet-over-all-paths” conservative solution
 - Meet operator combines information across paths
In general, a **semilattice** is a set of values L, special values \top (top) and \bot (bottom), and a meet operator \wedge such that

- $a \geq b$ iff $a \wedge b = b$
- $a > b$ iff $a \geq b$ and $a \neq b$
- $a \wedge \bot = \bot$ for all $a \in L$
- $a \wedge \top = a$ for all $a \in L$

Partial ordering

- Monotonic

Figure 9.22 from Dragon book: semilattice of definitions using \cup (set union) as the meet operation
For sparse simple constant propagation (SSCP), the lattice is very shallow:

- $c_i \land \bot = \bot$ for all c_i
- $c_i \land T = a$ for all c_i
- $c_i \land c_j = c_i$ if $c_i = c_j$
- $c_i \land c_j = \bot$ if $c_i \neq c_j$

Basically: each SSA value is either a known constant or it is a variable:

- Dataflow analysis propagates this information
Data-Flow Analysis

• Define **properties** of interest for basic blocks
 - Usually **sets** of blocks, variables, definitions, etc.

• Define a **formula** for how those properties change within a block
 - F(B) is based on F(A) where A is a predecessor or successor of B
 - This is basically the meet operator for a particular problem

• Specify **initial information** for all blocks
 - Entry/exit blocks usually have different values

• Run an **iterative update** algorithm to propagate changes
 - Keep running until the properties converge for all basic blocks

• Key concept: **finite descending chain property**
 - Properties must be monotonically increasing or decreasing
 - Otherwise, termination is not guaranteed
Data-Flow Analysis

• This kind of algorithm is called a fixed-point algorithm
 – It runs until it converges to a “fixed point”

• **Forward vs. backward data-flow analysis**
 – Forward: along graph edges (based on predecessors)
 – Backward: reverse of forward (based on successors)

• **Types of data-flow analysis**
 – Constant propagation
 – Dominance
 – Liveness
 – Available expressions
 – Reaching definitions
 – Anticipable expressions
Dominance

- Block A **dominates** block B if A is on every path from the entry to B
 - Block A **immediately** dominates block B if there are no blocks between them
 - Block B **postdominates** block A if B is on every path from A to an exit
- Simple dataflow analysis formulation
 - $\text{preds}(b)$ is the set of blocks that are predecessors of block b
 - $\text{Dom}(b)$ is the set of blocks that dominate block b
 - intersection of Dom for all immediate predecessors

Initial conditions:

$$\text{Dom}(\text{entry}) = \{ \text{entry} \}$$

$$\forall b \neq \text{entry}, \quad \text{Dom}(b) = \{ \text{all blocks} \}$$

Updates:

$$\text{Dom}(b) = \{ b \} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p)$$
Liveness

- Variable \(v \) is live at point \(p \) if there is a path from \(p \) to a use of \(v \) with no intervening assignment to \(v \)
 - Useful for finding uninitialized variables (live at function entry)
 - Useful for optimization (remove unused assignments)
 - Useful for register allocation (keep live vars in registers)
- Initial information: \(UEVar \) and \(VarKill \)
 - \(UEVar(B) \): variables used in \(B \) before any redefinition in \(B \)
 - (“upwards exposed” variables)
 - \(VarKill(B) \): variables that are defined in \(B \)
- Textbook notation note: \(X \cap \overline{Y} = X - Y \)

Initial conditions: \(\forall b, \ LiveOut(b) = \emptyset \)

Updates: \(\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} UEVar(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s)) \)
Liveness example

(a) Code for the Basic Blocks

\[
\begin{align*}
B_0: & \quad i \leftarrow 1 \\
& \quad \rightarrow B_1 \\
B_1: & \quad a \leftarrow \ldots \\
& \quad c \leftarrow \ldots \\
& \quad (a < c) \rightarrow B_2, B_5 \\
B_2: & \quad b \leftarrow \ldots \\
& \quad c \leftarrow \ldots \\
& \quad d \leftarrow \ldots \\
& \quad \rightarrow B_3 \\
B_3: & \quad y \leftarrow a + b \\
& \quad z \leftarrow c + d \\
& \quad i \leftarrow i + 1 \\
& \quad (i \leq 100) \rightarrow B_1, B_4 \\
B_4: & \quad \text{return} \\
B_5: & \quad a \leftarrow \ldots \\
& \quad d \leftarrow \ldots \\
& \quad (a \leq d) \rightarrow B_6, B_8 \\
B_6: & \quad d \leftarrow \ldots \\
& \quad \rightarrow B_7 \\
B_7: & \quad b \leftarrow \ldots \\
& \quad \rightarrow B_3 \\
B_8: & \quad c \leftarrow \ldots \\
& \quad \rightarrow B_7 \\
B_9: & \quad \end{align*}
\]

(b) Control-Flow Graph

(c) Initial Information

<table>
<thead>
<tr>
<th></th>
<th>B_0</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>B_6</th>
<th>B_7</th>
<th>B_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>UEVAR</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${a, b, c, d, i}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>VARKILL</td>
<td>${i}$</td>
<td>${a, c}$</td>
<td>${b, c, d}$</td>
<td>${y, z, i}$</td>
<td>\emptyset</td>
<td>${a, d}$</td>
<td>${d}$</td>
<td>${b}$</td>
<td>${c}$</td>
</tr>
</tbody>
</table>

\[\forall b, \text{LiveOut}(b) = \emptyset \quad \text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) \setminus \text{VarKill}(s))\]
Alternative definition

• Define LiveIn as well as LiveOut
 - Two formulas for each basic block
 - Makes things a bit simpler to reason about
 • Separates change within block from change between blocks

$$
\forall b, \; \text{LiveOut}(b) = \emptyset
$$

$$
\text{LiveIn}(b) = \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b))
$$

$$
\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s)
$$
• Forwards dataflow analyses converge faster with reverse postorder processing of CFG blocks
 – Visit as many of a block’s predecessors as possible before visiting that block
 – Strict reversal of normal postorder traversal
 – Similar to concept of topological sorting on DAGs
 – NOT EQUIVALENT to preorder traversal!
 – Backwards analyses should use reverse postorder on reverse CFG

Depth-first search:

- Valid preorderings:
 - A, B, D, C (left first)
 - A, C, D, B (right first)

- Valid postorderings:
 - D, B, C, A (left first)
 - D, C, B, A (right first)

- Valid reverse postorderings:
 - A, C, B, D (left first)
 - A, B, C, D (right first)
Summary

\[\text{Dom} \left(\text{entry} \right) = \{ \text{entry} \} \]
\[\forall b \neq \text{entry}, \quad \text{Dom}(b) = \{ \text{all blocks} \} \]
\[\text{Dom}(b) = \{ b \} \cup \bigcap_{p \in \text{preds}(b)} \text{Dom}(p) \]

\[\forall b, \quad \text{LiveOut}(b) = \emptyset \]
\[\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{UEVar}(s) \cup (\text{LiveOut}(s) - \text{VarKill}(s)) \]

\[\forall b, \quad \text{LiveOut}(b) = \emptyset \]
\[\text{LiveIn}(b) = \text{UEVar}(b) \cup (\text{LiveOut}(b) - \text{VarKill}(b)) \]
\[\text{LiveOut}(b) = \bigcup_{s \in \text{succs}(b)} \text{LiveIn}(s) \]