

CS 432
Fall 2018

Mike Lam, Professor

Code Generation

loadI 3 => r1
loadI 4 => r2
mult r1, r2 => r3
loadI 2 => r4
add r3, r4 => r5
print r5

Compilers

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"

Current
focus

Our Project

● Current status: type-checked AST
● Next step: convert to ILOC

– This step is called code generation
– Convert from a tree-based IR to a linear IR

● Or directly to machine code (uncommon)
● Use a tree traversal to “linearize” the program

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Goals

● Linear codes
– Stack code (push a, push b, multiply, pop c)
– Three-address code (c = a + b)
– Machine code (movq a, %eax; addq b, %eax; movq %eax, c)

● Code generator requirements
– Must preserve semantics
– Should produce efficient code
– Should run efficiently

Obstacles

● Generating the most optimal code is undecidable
– Unlike front-end transformations

● (e.g., lexing & parsing)

– Must use heuristics and approximation algorithms
– This is why most compilers research since 1960s has

been on the back end

ILOC

● Linear IR based on research compiler from Rice
● See Appendix A (and ILOCInstruction / ILOCInterpreter)
● I have made some modifications to simplify P5

– Removed most immediate instructions (i.e., subI)

– Removed binary shift instructions
– Removed character-based instructions
– Removed jump tables
– Removed comparison-based conditional jumps
– Added labels and function call mechanisms (call, param, return)

– Added binary not and arithmetic neg

– Added print and nop instructions

ILOC

● Simple von Neumann architecture
– Not an actual hardware architecture, but useful for teaching
– 32-bit words w/ 64K address space
– Read-only code region indexed by instruction
– Unlimited 32-bit integer virtual registers (r1, r2, …)
– Four special-purpose registers:

● IP: instruction pointer
● SP: stack pointer
● BP: base pointer
● RET: return value

Stack

Data

Code

0x0

0xFFFF

ILOC

ILOC

Syntax-Directed Translation

● Similar to attribute grammars (Figure 4.15)
● Create code-gen routine for each production

– Each routine generates code based on a template
– Save intermediate results in temporary registers

● In our project, we will use a visitor
– Still syntax-based (actually AST-based)
– Not dependent on original grammar
– Generate code as a synthesized attribute (“code”)
– Save temporary registers as another attribute (“reg”)

ILOC

● Sample code:

 loadI 3 => r1 // ASTLiteral (3)
 loadI 4 => r2 // ASTLiteral (4)
 mult r1, r2 => r3 // ASTBinOp (*)
 loadI 2 => r4 // ASTLiteral (2)
 add r3, r4 => r5 // ASTBinOp (+)
 print r5 // ASTVoidFuncCall (print_str)

print_int(2+3*4);

Decaf equivalent:

ILOC

● Sample code:

 loadI 3 => r1 // ASTLiteral (3)
 loadI 4 => r2 // ASTLiteral (4)
 mult r1, r2 => r3 // ASTBinOp (*)
 loadI 2 => r4 // ASTLiteral (2)
 add r3, r4 => r5 // ASTBinOp (+)
 print r5 // ASTVoidFuncCall (print_str)

print_int(2+3*4);

Decaf equivalent:

ILOC

● Sample code:

 loadI 5 => r1
 loadI 8 => r2
 add r1, r2 => r3
 loadI 10 => r4
 cmp_LT r3, r4 => r5
 cbr r5 => l1, l2

l1:
 print “yes”
 jmp l3
l2:
 print “no”
l3:

if (5 + 8 < 10) {
 print_str(“yes”);
} else {
 print_str(“no”);
}

Decaf equivalent:

Boolean Encoding

● Integers: 0 for false, 1 for true
● Difference from book

– No comparison-based conditional branches
– Conditional branching uses boolean values instead
– This enables simpler code generation

● Short-circuiting
– Not in Decaf!

String Handling

● Arrays of chars vs. encapsulated type
– Former is faster, latter is easier/safer
– C uses the former, Java uses the latter

● Mutable vs. immutable
– Former is more intuitive, latter is (sometimes) faster
– C uses the former, Java uses the latter

● Decaf: immutable string constants only
– No string variables

Array Accesses

● 1-dimensional case: base + width * i
● Generalization for multiple dimensions:

– base + (i_1 * w_1) + (i_2 * w_2) + ... + (i_k * w_k)

● Alternate definition:
– 1d: base + width * (i_1)
– 2d: base + width * (i_1 * n_2 + i_2)
– nd: base + width * ((... ((i_1 * n_2 + i_2) * n_3 + i_3) ...) * n_k + i_k) * width

● Row-major vs. column-major
● In Decaf: row-major one-dimensional global arrays

Struct and Record Types

● How to access member values?
– Static offsets from base of struct/record

● OO adds another level of complexity
– Now classes have methods
– Class instance records and virtual method tables

● In Decaf: no structs or classes

Control Flow

● Introduce labels
– Named locations in the program
– Generated sequentially using static newlabel() call

● Generate jumps/branches using templates
– In ILOC: “cbr” instruction (no fallthrough!)

– Templates are composable

Control Flow

if statement: if (E) B1

 rE = << E code >>

 cbr rE → b1, skip

 b1:

 << B1 code >>

 skip:

Control Flow

if statement: if (E) B1 else B2

 rE = << E code >>

 cbr rE → b1, b2

 b1:

 << B1 code >>

 jmp done

 b2:

 << B2 code >>

 done:

Control Flow

while loop: while (E) B

Control Flow

while loop: while (E) B

 cond:

 rE = << E code >>

 cbr rE → body, done

 body:

 << B code >>

 jmp cond

 done:

Control Flow

while loop: while (E) B

 cond: ; CONTINUE target

 rE = << E code >>

 cbr rE → body, done

 body:

 << B code >>

 jmp cond

 done: ; BREAK target

Control Flow

for loop: for V in E1, E2 B

 rX = << E1 code >>

 rY = << E2 code >>

 rV = rX

 cond:

 cmp_GE rV, rY → rC

 cbr rC → done, body

 body:

 << B code >>

 rV = rV + 1 ; CONTINUE target

 jmp cond

 done: ; BREAK target

NOT CURRENTLY
IN DECAF

SSA Form

● Static single-assignment
– Unique name for each newly-calculated value
– Values are collapsed at control flow points using Φ-functions

● (not actual executed!)

– Useful for various types of analysis
– We’ll generate ILOC in SSA for P5

cmp_LT r1, r2 → r3
cbr r3 → l1, l2

l1:
 loadI 4 → r4
 jmp l3

l2:
 loadI 8 → r5
 jmp l3

l3:
 r6 = Φ(r4, r5)

if (a < b) {
 c = 4;
} else {
 c = 8;
}

Procedure Calls

● These are harder
– We'll talk about them next week

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 27
	Slide 28

