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Code Generation

loadI 3 => r1
loadI 4 => r2
mult r1, r2 => r3
loadI 2 => r4
add r3, r4 => r5
print r5



  

Compilers

char data[20];

int main() {
    float x
      = 42.0;
    return 7;
}

Source code Tokens Syntax tree
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Our Project

● Current status: type-checked AST
● Next step: convert to ILOC

– This step is called code generation
– Convert from a tree-based IR to a linear IR

● Or directly to machine code (uncommon)
● Use a tree traversal to “linearize” the program

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...



  

Goals

● Linear codes
– Stack code (push a, push b, multiply, pop c)
– Three-address code (c = a + b)
– Machine code (movq a, %eax; addq b, %eax; movq %eax, c)

● Code generator requirements
– Must preserve semantics
– Should produce efficient code
– Should run efficiently



  

Obstacles

● Generating the most optimal code is undecidable
– Unlike front-end transformations

● (e.g., lexing & parsing)

– Must use heuristics and approximation algorithms
– This is why most compilers research since 1960s has 

been on the back end



  

ILOC

● Linear IR based on research compiler from Rice
● See Appendix A (and ILOCInstruction / ILOCInterpreter)
● I have made some modifications to simplify P5

– Removed most immediate instructions (i.e., subI)

– Removed binary shift instructions
– Removed character-based instructions
– Removed jump tables
– Removed comparison-based conditional jumps
– Added labels and function call mechanisms (call, param, return)

– Added binary not and arithmetic neg

– Added print and nop instructions



  

ILOC

● Simple von Neumann architecture
– Not an actual hardware architecture, but useful for teaching
– 32-bit words w/ 64K address space
– Read-only code region indexed by instruction
– Unlimited 32-bit integer virtual registers (r1, r2, …)
– Four special-purpose registers:

● IP: instruction pointer
● SP: stack pointer
● BP: base pointer
● RET: return value

Stack

Data

Code

0x0

0xFFFF



  

ILOC



  

ILOC



  

Syntax-Directed Translation

● Similar to attribute grammars (Figure 4.15)
● Create code-gen routine for each production

– Each routine generates code based on a template
– Save intermediate results in temporary registers

● In our project, we will use a visitor
– Still syntax-based (actually AST-based)
– Not dependent on original grammar
– Generate code as a synthesized attribute (“code”)
– Save temporary registers as another attribute (“reg”)



  

ILOC

● Sample code:

    loadI 3 => r1 // ASTLiteral (3)
    loadI 4 => r2 // ASTLiteral (4)
    mult r1, r2 => r3 // ASTBinOp (*)
    loadI 2 => r4 // ASTLiteral (2)
    add r3, r4 => r5 // ASTBinOp (+)
    print r5 // ASTVoidFuncCall (print_str)

print_int(2+3*4);

Decaf equivalent:



  

ILOC

● Sample code:

    loadI 3 => r1 // ASTLiteral (3)
    loadI 4 => r2 // ASTLiteral (4)
    mult r1, r2 => r3 // ASTBinOp (*)
    loadI 2 => r4 // ASTLiteral (2)
    add r3, r4 => r5 // ASTBinOp (+)
    print r5 // ASTVoidFuncCall (print_str)

print_int(2+3*4);

Decaf equivalent:



  

ILOC

● Sample code:

    loadI 5 => r1
    loadI 8 => r2
    add r1, r2 => r3
    loadI 10 => r4
    cmp_LT r3, r4 => r5
    cbr r5 => l1, l2

l1:
    print “yes”
    jmp l3
l2:
    print “no”
l3:

if (5 + 8 < 10) {
    print_str(“yes”);
} else {
    print_str(“no”);
}

Decaf equivalent:



  

Boolean Encoding

● Integers: 0 for false, 1 for true
● Difference from book

– No comparison-based conditional branches
– Conditional branching uses boolean values instead
– This enables simpler code generation

● Short-circuiting
– Not in Decaf!



  

String Handling

● Arrays of chars vs. encapsulated type
– Former is faster, latter is easier/safer
– C uses the former, Java uses the latter

● Mutable vs. immutable
– Former is more intuitive, latter is (sometimes) faster
– C uses the former, Java uses the latter

● Decaf: immutable string constants only
– No string variables



  

Array Accesses

● 1-dimensional case:  base + width * i
● Generalization for multiple dimensions:

– base + (i_1 * w_1) + (i_2 * w_2) + ... + (i_k * w_k)

● Alternate definition:
– 1d: base + width * (i_1)
– 2d: base + width * (i_1 * n_2 + i_2)
– nd: base + width * (( ... ((i_1 * n_2 + i_2) * n_3 + i_3) ... ) * n_k + i_k) * width

● Row-major vs. column-major
● In Decaf: row-major one-dimensional global arrays



  

Struct and Record Types

● How to access member values?
– Static offsets from base of struct/record

● OO adds another level of complexity
– Now classes have methods
– Class instance records and virtual method tables

● In Decaf: no structs or classes



  

Control Flow

● Introduce labels
– Named locations in the program
– Generated sequentially using static newlabel() call

● Generate jumps/branches using templates
– In ILOC: “cbr” instruction (no fallthrough!)

– Templates are composable



  

Control Flow

if statement: if (E) B1

        rE = << E code >>

        cbr rE → b1, skip

    b1:

        << B1 code >>

    skip:



  

Control Flow

if statement: if (E) B1 else B2

        rE = << E code >>

        cbr rE → b1, b2

    b1:

        << B1 code >>

        jmp done

    b2:

        << B2 code >>

    done:



  

Control Flow

while loop: while (E) B



  

Control Flow

while loop: while (E) B

    cond:

        rE = << E code >>

        cbr rE → body, done

    body:

        << B code >>

        jmp cond

    done:



  

Control Flow

while loop: while (E) B

    cond:                         ; CONTINUE target

        rE = << E code >>

        cbr rE → body, done

    body:

        << B code >>

        jmp cond

    done:                         ; BREAK target



  

Control Flow

for loop: for V in E1, E2 B

        rX = << E1 code >>

        rY = << E2 code >>

        rV = rX

    cond:

        cmp_GE rV, rY → rC

        cbr rC → done, body

    body:

        << B code >>

        rV = rV + 1               ; CONTINUE target

        jmp cond

    done:                         ; BREAK target

NOT CURRENTLY
IN DECAF



  

SSA Form

● Static single-assignment
– Unique name for each newly-calculated value
– Values are collapsed at control flow points using Φ-functions

● (not actual executed!)

– Useful for various types of analysis
– We’ll generate ILOC in SSA for P5

cmp_LT r1, r2 → r3
cbr r3 → l1, l2

l1:
  loadI 4 → r4
  jmp l3

l2:
  loadI 8 → r5
  jmp l3

l3:
  r6 = Φ(r4, r5)

if (a < b) {
    c = 4;
} else {
    c = 8;
}



  

Procedure Calls

● These are harder
– We'll talk about them next week
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