

CS 432
Fall 2018

Mike Lam, Professor

Static Analysis

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"

Current
focus

Analysis goal: reject as many incorrect
programs as possible at the AST level
before attempting code generation

Overview

● Syntax: form of a program
– Described using regular expressions and context-free grammars

● Semantics: meaning of a program
– Much more difficult to describe clearly
– Described informally using abstract syntax trees

Valid character strings (identified by I/O system)

Valid sequences of Decaf tokens (identified by lexer)

Syntactically-valid Decaf programs (identified by parser)

Semantically-valid Decaf programs (identified by analysis)

Correct Decaf programs (identified by ???)

Aside: Semantic approaches

● Three main formal approaches:
– Operational semantics
– Axiomatic semantics
– Denotational semantics

Operational Semantics

● Describe a program's effects using a simpler
language that is closer to the hardware

for (i=0; i<n; i++) {
 m *= i;
}

 i=0;
loop: if i>=n goto done
 m *= i
 i++
 goto loop
done:

for (e1; e2; e3) {
 e4
}

 e1
loop: if !e2 goto done
 e4
 e3
 goto loop
done:

Axiomatic Semantics

● Express programs as proof trees
– Loops can be difficult to handle

{P} if e1 then e2 else e3 {Q}

{P ^ e1} e2 {Q} {P ^ ¬e1} e3 {Q}

{x=10} if x > 5 then y := 3 else y := 7 {x=10 ^ y=3}

{x=10 ^ x>5} y:=3 {x=10 ^ y=3}

...

SConditional

SConditional

SAssign

Denotational Semantics

● Describes a program's results using functions
– Must also track system state

eval :: (Program, State) → (Value, State)

eval(e1 + e2, S) =
 let (v1, S') = eval(e1, S) in
 let (v2, S'') = eval(e2, S') in
 (v1 + v2, S'')

eval(while e1 do e2, S) =
 let (v, S') = eval(e1, S) in
 if not v then
 (v, S')
 else let (_, S'') = eval(e2, S')
 eval(while e1 do e2, S'')

Static Analysis

● Goal: reject incorrect programs
● Problem: checking semantics is hard!

– In general, we won't be able to check for full correctness
– However, some aspects of semantics can be robustly

encoded using types and type systems

Types

● A type is an abstract category characterizing a range of data values
– Base types: integer, character, boolean, floating-point
– Enumerated types (finite list of constants)
– Pointer types (“address of X”)
– Array or list types (“list of X”)
– Compound/record types (named collections of other types)
– Function types: (type1, type2, type3) → type4

● Two types are name-equivalent if their names are identical
● Two types are structurally-equivalent if

– They are the same basic type or
– They are recursively structurally-equivalent

C example: typedef unsigned char byte_t;
unsigned char a; // types of a and b are structurally-
byte_t b; // equivalent but not name equivalent

Type Conversions

● Implicit vs. explicit
– Implicit conversions are performed automatically by the

compiler (“coercions”)
● E.g., double x = 2;

– Explicit conversions are specified by the programmer
(“casts”)

● E.g., int x = (int)1.5;

● Narrowing vs. widening
– Widening conversions preserve information

● E.g., int → long

– Narrowing conversions may lose information
● E.g., float → int

Type Systems

● A type system is a set of type rules
– Rules: valid types, type compatibility, and how values can be used
– “Strongly typed” if every expression can be assigned an

unambiguous type
– “Statically typed” if all types can be assigned at compile time
– “Dynamically typed” if some types can only be discovered at runtime

● Benefits of a robust type system
– Earlier error detection
– Better documentation
– Increased modularization

Type Checking

● Type inference is the process of assigning types to expressions
– This information must be “inferred” if it is not explicit
– For Decaf, every ASTExpression has an unambiguous inferred type!

● Conclusions of the type proofs – assume the premises are true

● Type checking is the process of ensuring that a program has no
type-related errors
– Ensure that operations are supported by a variable's type
– Ensure that operands are of compatible types
– This could happen at compile time (for static type systems) or at run time

(for dynamic type systems)
– A type error is usually considered a bug
– For Decaf, almost every ASTNode child class will have some kind of check

Type Checking

● Sound vs. complete type checking
– A “sound” system has no false positives

● All errors reported are true errors

– A “complete” system has no false negatives
● All true errors are reported

● Most type checking is sound but not complete
– The lack of type errors does not mean the program is

correct
– However, the presence of a type error generally does mean

that the program is NOT correct

Type Inference

● Polymorphism: literally “taking many forms”
– A polymorphic construct supports multiple types
– Subtype polymorphism: object inheritance
– Function polymorphism: overloading
– Parametric polymorphism: generic type identifiers

● E.g., templates in C++ or generics in Java

– During type inference, create type variables, and unify type
variables with concrete types

● Some type variables might remain unbound
● E.g., len : ([a]) → int

● E.g., map : ((a → b), [a]) → [b]

Symbols

● A symbol is a single name in a program
– What type of value is it?
– If it is a variable:

● How big is it?
● Where is it stored?
● How long must its value be preserved?
● Who is responsible for allocating, initializing, and de-allocating it?

– If it is a function:
● What parameters does it take?
● What does it return?

Symbol Tables

● A symbol table stores information about symbols during
compilation
– Aggregates information from (potentially) distant parts of code
– Maps symbol names to symbol information
– Often implemented using hash tables
– Usually one symbol table per scope

● Each table contains a pointer to its parent (next larger scope)

● Supported operations
– Insert(name, record) – add a new symbol to the current table
– LookUp(name) – retrieve information about a symbol

AST attributes

● An AST attribute is an additional piece of information
– Often used to store data useful to multiple passes
– Some translations can be done purely using attributes

● Syntax-directed translation (original dragon book!)
● Modern translation is often too complex for this

– Inherited vs. synthesized attributes
● Inherited attributes depend only on parents/ancestors
● Synthesized attributes may depend on siblings or children

Attributes in P4 and P5

Building Symbol Tables (P4)

● Walk the AST, creating linked tables using a stack
– Create new symbol table for each scope

● Global symbols in ASTProgram
● Function local symbols in ASTFunction
● Block-local symbols in ASTBlock
● Caveat: every function contains a function-wide block for local vars, so

the function level symbol table will ONLY contain the function parameters
● Store tables as an attribute (“symbolTable”) in AST nodes

– Add all symbol information
● Global variables go in ASTProgram table (including arrays)
● Function symbols go in ASTProgram table
● Function parameters go in ASTFunction table
● Local variables go in ASTBlock table

Static Analysis (P4)

● Walk the AST, checking correctness properties
– Infer the types of all expressions (pre-visits)

● Use symbol table lookups where necessary
● Store in “type” attribute

– Verify all types are correct (post-visits)
● Refer to type rules
● May require checking “type” attribute of children
● May require symbol table lookups
● May require maintaining some state (e.g., current function)

– Verify other properties of correct programs (post-visits)
● Example: break and continue should only occur in while loops
● Full list on the project website

P4 reminder

● Check your implementation against the reference
compiler (decaf-1.0.jar)
– If the reference compiler rejects a program, you should too

(and vice versa for correct programs)
– Use “--fdump-tables” to print the symbol tables

– Also, the graphical AST should have the tables now (both
in the reference compiler and in your project)

Optional “challenge:” it is possible to write P4 using a “pure”
visitor; i.e., the visitor methods perform no tree traversals aside

from symbol lookups and accessing child attributes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

