

CS 432
Fall 2018

Mike Lam, Professor

Type Systems and the
Visitor Design Pattern

Γ
τ λ

public class WhileLoopCounter extends DefaultASTVisitor {
 private int numWhileLoops = 0;
 @Override
 public void preVisit(ASTWhileLoop node)
 {
 numWhileLoops++;
 }
 @Override
 public void postVisit(ASTProgram node)
 {
 System.out.println("Number of while loops = " +
 numWhileLoops);
 }
}

General theme

● Pattern matching over a tree is very useful in compilers
– Debug output (P3)
– Type checking & other static analysis (P4)
– Code generation (P5)
– Instruction selection

● Theory and practice
– Type systems describe correctly-typed program trees
– Visitor design pattern allows clean implementation in a non-

functional language
● Generalization of tree traversal (CS 240 approach)

Types

● A type is an abstract category characterizing a range
of data values
– Base types: integer, character, boolean, floating-point
– Enumerated types (finite list of constants)
– Pointer types (“address of X”)
– Array or list types (“list of X”)
– Compound/record types (named collections of other types)
– Function types: (type1, type2, type3) → type4

Type Systems

● A type system is a set of type rules
– Rules: valid types, type compatibility, and how values can be used
– A type judgment is an assertion that expression x has type t

● Often requires the context of a type environment (i.e., symbol table)

– “Strongly typed” if every expression can be assigned an unambiguous type
– “Statically typed” if all types can be assigned at compile time
– “Dynamically typed” if some types can only be discovered at runtime

● Benefits of a robust type system
– Earlier error detection
– Better documentation
– Increased modularization

Formal Type Theory

● A formal type system is a set of type inference rules
– Each rule has a name, zero or more premises (above the line), and a

conclusion (below the line)
– Premises and conclusions are type judgments (A x : t⊢)
– “ ” ⊢ is a ternary operator connecting expressions with types
– Omit type for statements (“A s⊢ ” means “s is well-typed in environment A”)

Formal Type Theory

● Type proofs consist of composing multiple type rules
– Apply rule instances recursively to form proof trees
– Type environments (e.g., symbol tables, marked in rules with ⊢ operator)

provide type context information
– Proof structure is based on the AST structure (“syntax-directed”)
– Curry-Howard correspondence (“proofs as programs”)

A x = foo(y) + 1⊢

A = { foo : int → int, x : int, y : int }

A foo(y) + 1 : ⊢ int

A foo(y) : ⊢ int

A y : ⊢ int

TAssign

TDec

y : int A∊ TVar

TAdd

foo : (int)→int A∊

x : int A∊

A 1 : ⊢ int
TFuncCall

Formal Type Theory

● Is the following Decaf expression well-typed in the given
environment?
– If so, what is its type?

A = { x : int }

x + 4

BinExpr (+)

Loc (x) Lit (4)

AST:

Formal Type Theory

A x + 4 : ⊢

A x : ⊢ A 4 : ⊢ TAdd

x : int A∊TLoc TDec

A = { x : int }

int

Formal Type Theory

A x + 4 : ⊢ int

A x : ⊢ int A 4 : ⊢ int TAdd

x : int A∊TLoc TDec

A = { x : int }

P4: Static Analysis

● Language and project specifications provide rules to check at each
type of AST node while traversing the AST
– E.g., at ASTWhileLoop, make sure the conditional has a boolean type
– E.g., at ASTBinaryExpr, if it’s an add make sure both operands are

integers (or if it’s an equals make sure the operand types match)

P4: Static Analysis

● General idea: traverse AST and reject invalid programs
– Need to traverse the tree multiple times

● Build symbol tables
● Perform type checking
● Later compiler passes

– We could write the tree traversal code every time, but that
would get tedious and would result in a lot of code
duplication

● Software engineering provides a better way in the form of the visitor
design pattern

A brief digression ...

● What are "design patterns"?

(HINT: remember them from CS 345!)

A brief digression ...

● What are "design patterns"?
– A reusable "template" or "pattern" that solves a

common design problem
● "Tried and true" solutions

– Main reference: Design Patterns: Elements of
Reusable Object-Oriented Software

● "Gang of Four:" Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides

Common Design Patterns

● Adapter – Converts one interface into another
● Factory – Allows clients to create objects without specifying a concrete class
● Flyweight – Manages large numbers of similar objects efficiently via sharing
● Iterator – Provides sequential access to a collection
● Monitor – Ensures mutually-exclusive access to member variables
● Null Object – Prevents null pointer dereferences by providing "default" object
● Observer – Track and update multiple dependents automatically on events
● Singleton – Provides global access to a single instance object
● Strategy – Encapsulate interchangeable algorithms
● Thread Pool – Manages allocation of available resources to queued tasks
● Visitor – Provides an iterator over a (usually recursive) structure

Design Patterns

● Pros
– Faster development
– More robust code (if implemented properly)
– More readable code (for those familiar with the patterns)
– Improved maintainability

● Cons
– Increased abstraction
– Increased complexity
– Philosophical: Suggests language deficiencies

● Solution: Consider using a different language

Visitor Pattern

● Visitor design pattern: don't mix data and actions
– Separates the representation of an object structure from the

definition of operations on that structure
– Keeps data class definitions cleaner
– Allows the creation of new operations without modifying all

data classes
– Solves a general issue with OO languages

● Lack of multiple dispatch (choosing a concrete method based on two
objects' data types)

– NOTE: This is stronger than parametric polymorphism alone
● Less useful in functional languages with more robust pattern matching

General Form

● Data: AbstractElement (ASTNode)
– ConcreteElement1 (ASTProgram)

– ConcreteElement2 (ASTVariable)

– ConcreteElement3 (ASTFunction)

– etc.
– All elements define "Accept()" method that recursively calls "Accept()" on

any child nodes (this is the actual tree traversal code!)

● Actions: AbstractVisitor (DefaultASTVisitor)
– ConcreteVisitor1 (BuildParentLinks)

– ConcreteVisitor2 (CalculateNodeDepths)

– ConcreteVisitor3 (StaticAnalysis)
● BuildSymbolTables
● MyDecafAnalysis

– All visitors have "VisitX()" methods for each element type

Benefits

● Adding new operations is easy
– Just create a new concrete visitor
– In our compiler, create a new DefaultASTVisitor subclass

● No wasted space for state in data classes
– Just maintain state in the visitors
– In our compiler, we will make a few exceptions for state

that is shared across many visitors (e.g., symbol tables)

Drawbacks

● Adding new data classes is hard
– This won't matter for us, because our AST types are

dictated by the grammar and won't change
● Breaks encapsulation for data members

– Visitors often need access to all data members
– This is ok for us, because our data objects are basically

just structs anyway (all data is public)

Minor Modifications

● "Accept()" → "traverse()"
● "Visit()" → "preVisit()" and "postVisit()"

– preVisit() allows preorder operations

– postVisit() allows postorder operations

– Also, a single inorder method: inVisit(ASTBinaryExpr)

● DefaultASTVisitor class
– Implements ASTVisitor interface

– Contains empty implementations of all "visit" methods
– Allows subclasses to define only the relevant visit methods

Visitor example

public class WhileLoopCounter extends DefaultASTVisitor
{
 private int numWhileLoops = 0;

 @Override
 public void preVisit(ASTWhileLoop node)
 {
 numWhileLoops++;
 }

 @Override
 public void postVisit(ASTProgram node)
 {
 System.out.println("Number of while loops = " +
 numWhileLoops);
 }
}

In DecafCompiler.java:

 ast.traverse(new WhileLoopCounter());

Decaf Project

● Project 3
– ASTVisitor

– DefaultASTVisitor (implements ASTVisitor)
● PrintDebugTree
● ExportTreeDOT

● BuildParentLinks (activity)
● CalculateNodeDepths (activity)

● Project 4
– PrintDebugSymbolTables (extends DefaultASTVisitor)

– StaticAnalysis (extends DefaultASTVisitor)
● BuildSymbolTables

● DecafAnalysis + MyDecafAnalysis

● Project 5
– ILOCGenerator + MyILOCGenerator

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

