CS 432
Fall 2018

recursion

Mike Lam, Professor See recursion.

Top-Down (LL) Parsing



Source code

Current

focus Back end

- -
hmm= --._..
- -
- -~
-
-

_ANA—

" Tokens Syntax tree ™.

A
A

"Front end"

A3
oooo
Doooo
ooog
oooo
Doooo .

24
ooo .
'O
'O

A}
A
1
1
L]
1
’

N

Machine code

... Parsing __..-"Code Generation
-------- " & Optimization
~



I Review

* Recognize regular languages with finite automata
— Described by regular expressions
- Rule-based transitions, no memory required
* Recognize context-free languages with pushdown automata

— Described by context-free grammars

- Rule-based transitions, MEMORY REQUIRED
* Add a stack!



I Segue

KEY OBSERVATION: Allowing the translator to use memory to track parse
state information enables a wider range of automated machine translation.

Chomsky Hierarchy of Languages

Recursively enumerable

Context-sensitive

Context-free

." Most useful

Regular " for PL

Grammar Languages Automaton Production rules (constraints)
Type-0 Recursively enumearable | Turing machine a —+ B (no restrictions)
Type-1 Context-sensitive Linear-bounded non-deterministic Turing machine | a 48 — a8
Type-2 Context-free MNon-deterministic pushdown automaton A=

A—a
Type-3 Regular Finite state automaton and

A —aB

https://en.wikipedia.org/wiki/Chomsky_hierarchy


https://en.wikipedia.org/wiki/Chomsky_hierarchy

I Parsing Approaches

* Top-down: begin with start symbol (root of parse tree), and gradually
expand non-terminals

- Stack contains leaves that still need to be expanded

* Bottom-up: begin with terminals (leaves of parse tree), and gradually
connect using non-terminals

- Stack contains roots of subtrees that still need to be connected

A
T~
V = E
T
Top-down SL E + E Bottom-up
V V




I Top-Down Parsing

root = createNode(S)
focus = root
push(null)

token = nextToken()

loop:
if (focus is non-terminal):
B = chooseRuleAndExpand(focus)
for each b in B.reverse():
focus.addChild(createNode(b))
push(b)
focus = pop()

else if (token == focus):
token = nextToken()
focus = pop()

else if (token == EOF and focus == null):
return root

else:
exit (ERROR)

m< >
— ! 1

m o m
@)

<mo <
+ — |l




I Recursive Descent Parsing

 ldea: use the system stack rather than an explicit stack

One function for each non-terminal
Encode productions with function calls and token checks
Use recursion to track current “state” of the parse

Easiest kind of parser to write manually

A - f C‘then’ S

‘goto’ L

class A {

public enum Type

{ IFTHEN, GOTO }
public Type type
public C cond
public S stmt
public L 1bl

—

parseA(tokens):
node = new A()
next = tokens.next()
if next == "if";:
node.type = IFTHEN
node.cond = parseC()

matchToken(“then”)
node.stmt = parseS()
else if next == “goto”

node.type = GOTO

node.lbl = parselL()
else

error (“expected ‘if’ or ‘goto’”)
return node



I Top-Down Parsing

* Main issue: choosing which rule to use

- With full lookahead, it would be relatively easy
* This would be very inefficient
- Can we do it with a single lookahead?

* That would be much faster
* Must be careful to avoid backtracking



I LL(1) Parsing

* LL(1) grammars and parsers

Left-to-right scan of the input string
Leftmost derivation
1 symbol of lookahead

Highly restricted form of context-free grammar

* No left recursion
* No backtracking

Context-Free
Hierarchy

Context-Free

LR(1)

LL(1)

Regular




I LL(1) Grammars

* We can convert many practical grammars to be LL(1)

— Must remove left recursion
- Must remove common prefixes (i.e., left factoring)

A o A - a B,
3 | o B,

Grammar with left recursion Grammar with common prefixes

A -
|



I Eliminating Left Recursion

e Left recursion: A - Ada |

- Often a result of left associativity (e.g., expression grammar)
— Leads to infinite looping/recursion in a top-down parser
- To fix, unroll the recursion into a new non-terminal

- Practical note (PA3): A and A’ can be a single method in your code

* Parse one [3, then continue parsing a’s until there are no more
« Keep adding the previous parse tree as a left subnode of the new parse tree

A - B A

A S A d »
| B A' 5 oo A

| €



I Left Factoring

« Common prefix: A - af;|af,

— Leads to ambiguous rule choice in a top-down parser
* One lookahead (a) is not enough to pick a rule; backtracking is required
- To fix, left factor the choices into a new non-terminal
- Practical note (PA3): A and A’ can be a single method in your code

* Parse and save data about a in temporary variables until you have enough
iInformation to choose

A - O
| o

B,
B, Al - B,




I LL(1) Parsing

* LL(1) parsers can also be auto-generated

- Similar to auto-generated lexers

- Tables created by a parser generator using FIRST and
FOLLOW helper sets

- These sets are also useful when building hand-written
recursive descent parsers

* And (as we’ll see next week), when building SLR parsers



l LL(1) Parsing

* FIRST(a)

- Set of terminals (or €) that can appear at the start of a
sentence derived from a (a terminal or non-terminal)

« FOLLOW(A) set

- Set of terminals (or $) that can occur immediately after non-
terminal A in a sentential form

e FIRST+A - B)

— If € is not in FIRST(B) Useful for choosing which
rule to apply when
* FIRST+(A) = FIRST(P) expanding a non-terminal
- Otherwise

e FIRST+(A) = FIRST(B) u FOLLOW(A)



I Calculating FIRST(a)

e Rule 1: ais aterminal a
- FIRST(a)={a}

e Rule 2: ais a non-terminal X

- Examine all productions X - Y, Y, ... Y,

 add FIRST(Y,)ifnotY, -*¢
« add FIRST(Y) ifY,...Y; -*¢& where j=i-1 (i.e., skip disappearing symbols)
- FIRST(X) is union of all of the above

e Rule 3: ais anon-terminal Xand X - ¢
- FIRST(X) includes ¢



I Calculating FOLLOW(B)

 Rule 1: FOLLOW(S) includes EOF / $
- Where S is the start symbol

* Rule 2: for every production A -~ a B 3
- FOLLOW(B) includes everything in FIRST([3) except €

 Rule 3:ifA -~ aBor (A - aBBandFIRST(B) contains &)
- FOLLOW(B) includes everything in FOLLOW(A)



Grammar:

Parse tree:

m >

<

I — 11

o <M<

+

Abstract syntax tree:




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

