

CS 432
Fall 2018

Mike Lam, Professor

Context-free Grammars

[audience looks around] "What just happened?"
"There must be some context we're missing."

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"Current
focus

Overview

● General programming language topics
– Syntax (what a program looks like)
– Semantics (what a program means)
– Implementation (how a program executes)

Syntax

● Textbook: "the form of [a language's] expressions,
statements, and program units."
– In other words, the form or structure of the code

● Goals of syntax analysis:
– Checking for program validity or correctness
– Facilitate translation (compiler) or execution (interpreter)

of a program

Syntax Analysis

● Tokens have no structure
– No inherent relationship between each other
– Need a way to describe hierarchy in a way that is closer to

the semantics of the language

total = sum(vals) / n

total identifier
= equals_op
sum identifier
(left_paren
vals identifier
) right_paren
/ divide_op
n identifier

=

total /

n

vals

sum()

Languages

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

● Regular languages are not sufficient to describe programming languages
– Core issue: finite DFAs can't “count:” no way to express ambn where n = f(m)
– Consider the language of all matched parentheses (n)n

– How can we solve this to make it feasible to write a compiler?

A → a | a B

A → γ

αAβ → αγβ

α → γ

Add memory! (and move up the language hierarchy)

NOTE: Greek letters (α,β,γ) indicate arbitrary
strings of terminals and/or non-terminals

Syntax Analysis

● Context-free language
– More expressive than regular languages
– Encodes hierarchy and structure of language tokens

● Usually represented using a tree

– Described by context-free grammars
● Recursive description of the language’s form
● Usually written in Backus-Naur Form

– Recognized by pushdown automata
● Two major approaches: top-down and bottom-up
● Next two weeks

– Provide ways to control ambiguity, associativity, and
precedence in a language

Context-Free Grammars

● A context-free grammar is a 4-tuple (T, NT, S, P)
– T: set of terminal symbols (tokens)
– NT: set of nonterminal symbols
– S: start symbol (S ϵ NT)
– P: set of productions or rules:

● NT → (T U NT)*

Context-Free
Hierarchy

Regular

LL(1)

LR(1)

Context-Free

Example:

 S → x S x
 S → y

Context-Free Grammars

● Non-terminals vs. terminals
– Terminals are single tokens, non-terminals are aggregations
– One special non-terminal: the start symbol

● Production rules
– Left hand side: single non-terminal
– Right hand side: sequence of terminals and/or non-terminals
– LHS can be replaced by the RHS (colloquially: "is composed of")
– RHS can be empty (or “ε”), meaning it can be composed of nothing

● Sentence: a sequence of terminals
– A sentence is a member of a language if and only if it can be derived

using the language’s grammar

Context-Free Grammars

● Derivation: a series of grammar-permitted transformations
leading to a sentence
– Begin with the grammars start symbol (a non-terminal)
– Each transformation applies exactly one rule

● Expand one non-terminal to a string of terminals and/or non-terminals
● Each intermediate string of symbols is a sentential form

– Leftmost vs. rightmost derivations
● Which non-terminal do you expand first?

– Parse tree represents a derivation in tree form (the sentence is the
sequence of all leaf nodes)

● Built from the top down during derivation
● Final parse tree is called complete parse tree
● For a compiler: represents a program, executed from the bottom up

Context-Free Grammars

● Backus-Naur Form: list of context-free grammar rules
– Usually beginning with start symbol
– Convention: non-terminals start with upper-case letters
– Combine rules using “|” operator:

– Several formatting variants:

<Assign> ::= <Var> = <Expr>
<Var> ::= a | b | c
<Expr> ::= <Expr> + <Expr>
 | <Var>

A → V = E
V → a | b | c
E → E + E
 | V

E → E + E
 | V

E → E + E
E → V E → E + E | V

Example

● Show the leftmost derivation and parse tree of the
sentence "a = b + c" using this grammar:

A → V = E
V → a | b | c
E → E + E
 | V

Example

● Show the leftmost derivation and parse tree of the
sentence "a = b + c" using this grammar:

A

V E

EE

A → V = E
V → a | b | c
E → E + E
 | V

A
V = E
a = E
a = E + E
a = V + E
a = b + E
a = b + V
a = b + c

a

V V

+

=

b c

Example

● Let’s revisit the “matched parentheses” problem
– Cannot write a regular expression for (n)n

– How about a context-free grammar?
– First attempt:

– Second attempt:

S → (S)
S → ε

Use underlining to indicate literal
terminals when ambiguous

S → (S) S
S → ε

S → S (S) S
S → ε

What (if anything) is wrong with this:

Ambiguous Grammars

● An ambiguous grammar allows multiple derivations (and
therefore parse trees) for the same sentence
– The semantics may be similar, but there is a difference syntactically!
– Example: if/then/else construct
– It is important to be precise!

● Often can be eliminated by rewriting the grammar
– Usually by making one or more rules more restrictive

A → B | C
B → x
C → x

A → A + A
 | A * A
 | x

A → ifthen A else A
 | ifthen A
 | stmt

Ambiguous
(Associativity/Precedence)

Ambiguous
(Ad-hoc)

Ambiguous
("Dangling Else" Problem)

Operator Associativity

● Does x+y+z = (x+y)+z or x+(y+z)?
– Former is left-associative
– Latter is right-associative

● Closely related to recursion
– Left-hand recursion → left associativity
– Right-hand recursion → right associativity

● Sometimes enforced explicitly in a grammar
– Different non-terminals on left- and right-hand sides of an operator
– Sometimes just noted with annotations

A → A + x
 | x

A → x + A
 | x

Left Associative Right Associative

Operator Precedence

● Precedence determines the relative priority of operators
● Does x+y*z = (x+y)*z or x+(y*z)?

– Former: "+" has higher precedence
– Latter: "*" has higher precedence

● Sometimes enforced explicitly in a grammar
– One non-terminal for each level of precedence

● Each level contains references to the next level

– Sometimes just noted with annotations
– Same approach for unary and binary operators

● For binary operators: left or right associativity?
● For unary operators: prefix or postfix?
● For unary operators: is repetition allowed?

A → A + B
 | B
B → B * C
 | C
C → x !
 | x

Precedence
+ (lowest)
* (middle)
! (highest)

Grammar Examples

A → A x
 | x

A → x A
 | x

A → A + x
 | x

A → x + A
 | x

A → B | C
B → x
C → x

A → ifthen A else A
 | ifthen A
 | stmt

Left Recursive Right Recursive

Left Associative Right Associative

Ambiguous
(Ad-hoc)

Ambiguous
("Dangling Else" Problem)

A → A + A
 | A * A
 | x

A → A + B
 | B
B → C * B
 | C
C → x !
 | x

Associativity/Precedence
+ (lowest, left-associative)
* (middle, right-associative)

! (highest, postfix unary)

Ambiguous
(Associativity/Precedence)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

