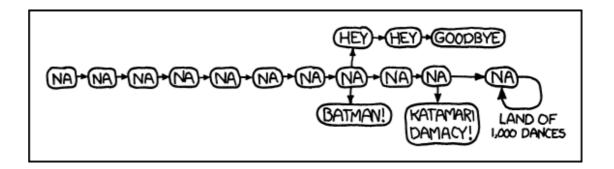
CS 432 Fall 2018

Mike Lam, Professor



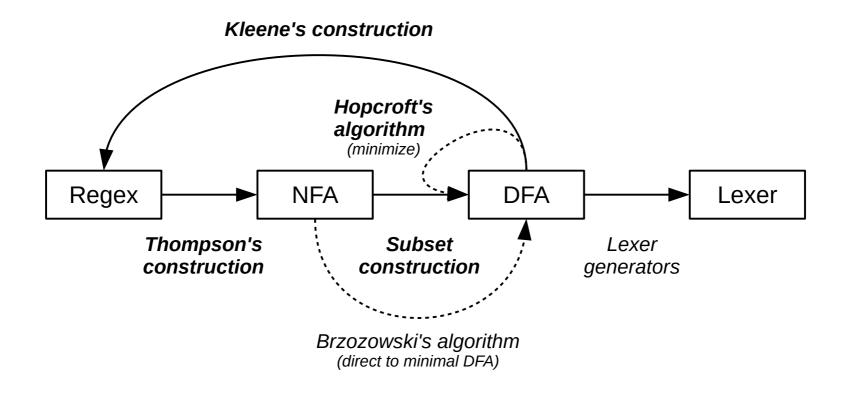
Finite Automata Conversions and Lexing

Finite Automata

- Key result: all of the following have the same expressive power (i.e., they all describe regular languages):
 - Regular expressions (REs)
 - Non-deterministic finite automata (NFAs)
 - Deterministic finite automata (DFAs)
- Proof by construction
 - An algorithm exists to convert any RE to an NFA
 - An algorithm exists to convert any NFA to a DFA
 - An algorithm exists to convert any DFA to an RE
 - For every regular language, there exists a minimal DFA
 - Has the fewest number of states of all DFAs equivalent to RE

Finite Automata

Finite automata transitions:



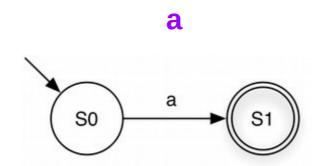
(dashed lines indicate transitions to a minimized DFA)

Finite Automata Conversions

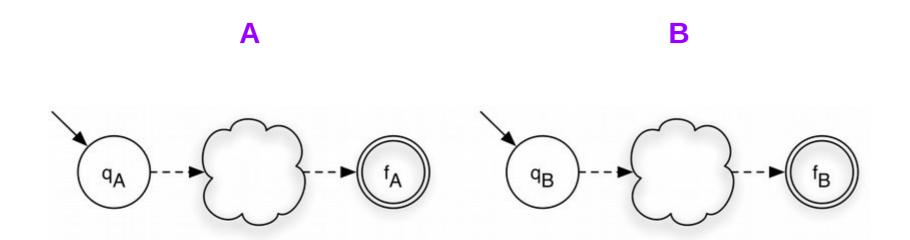
- RE to NFA: Thompson's construction
 - Core insight: **inductively** build up NFA using "templates"
 - Core concept: use null transitions to build NFA quickly
- NFA to DFA: Subset construction
 - Core insight: DFA nodes represent subsets of NFA nodes
 - Core concept: use **null closure** to calculate subsets
- DFA minimization: Hopcroft's algorithm
 - Core insight: create **partitions**, then keep splitting
- DFA to RE: Kleene's construction
 - Core insight: repeatedly eliminate states by **combining** regexes

Thompson's Construction

- Basic idea: create NFA inductively, bottom-up
 - Base case:
 - Start with individual alphabet symbols (see below)
 - Inductive case:
 - Combine by adding new states and null/epsilon transitions
 - **Templates** for the three basic operations
 - Invariant:
 - The NFA always has exactly one start state and one accepting state

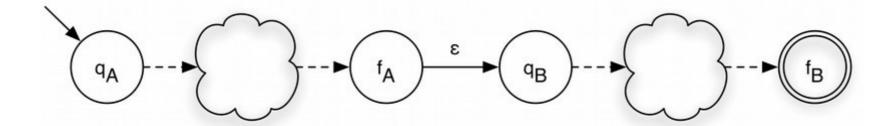


Thompson's: Concatenation



Thompson's: Concatenation

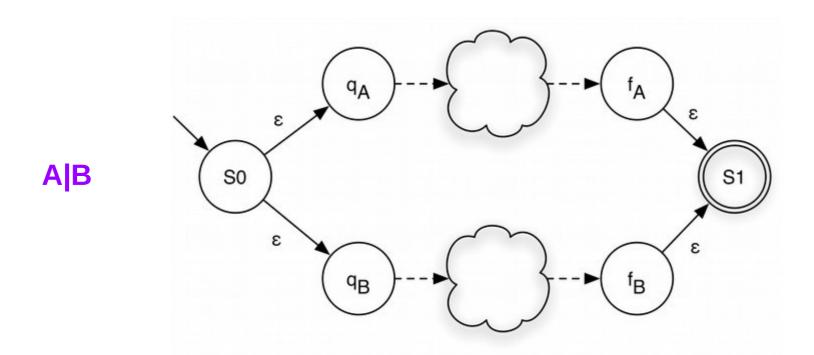
AB



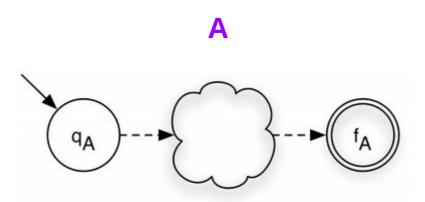
Thompson's: Union

A $q_A \longrightarrow f_A$ B $q_B \longrightarrow f_B$

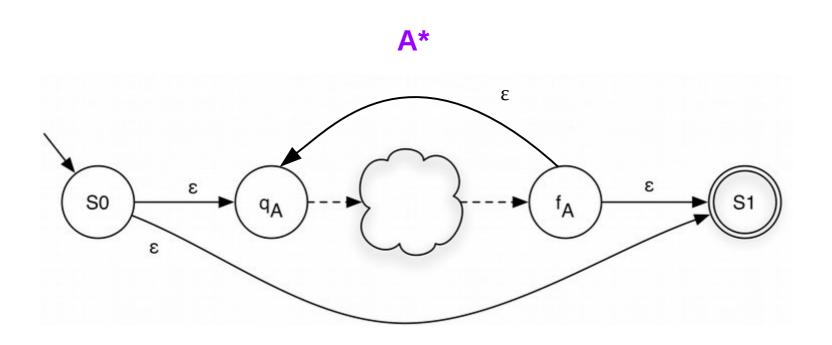
Thompson's: Union



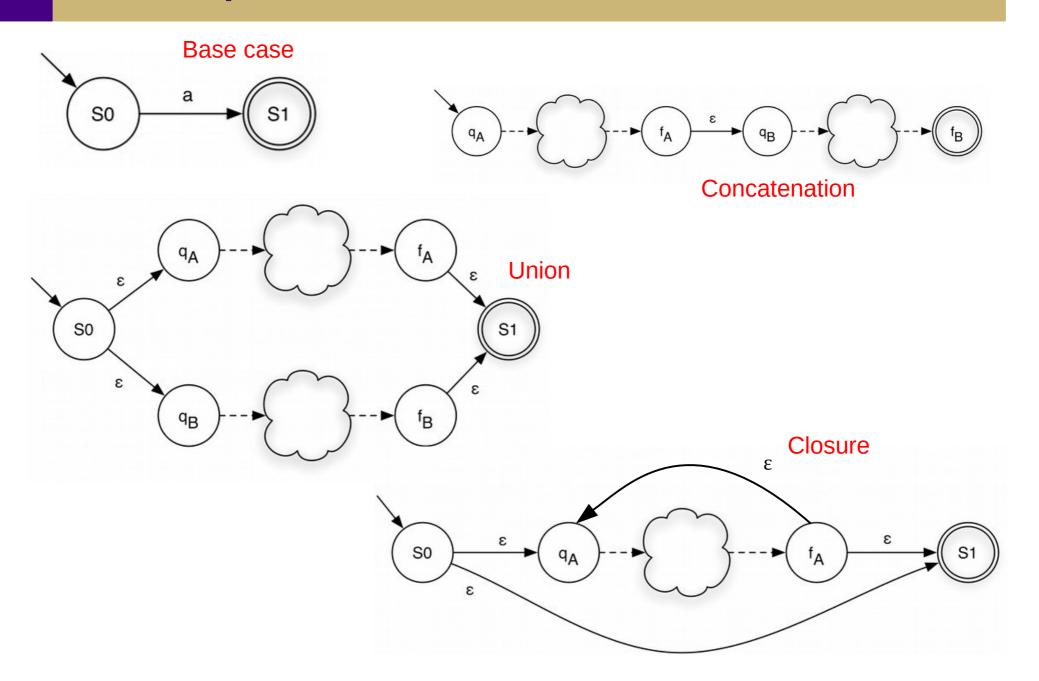
Thompson's: Closure



Thompson's: Closure

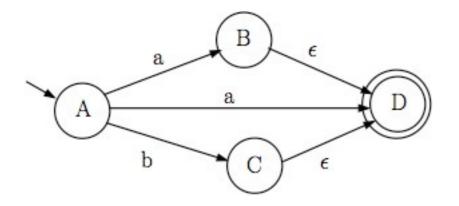


Thompson's Construction



Subset construction

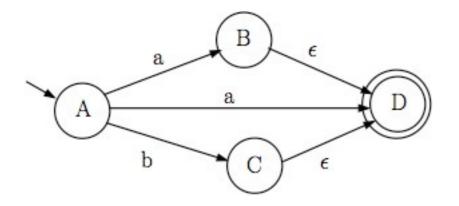
- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to "collapse" null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go "for free?"
 - Formally: ϵ -closure(s) = {s} \cup { t \in S | (s, $\epsilon \rightarrow$ t) \in δ }
 - Simulates running all possible paths through the NFA



```
Null closure of A = { A }
Null closure of B = { B, D }
Null closure of C =
Null closure of D =
```

Subset construction

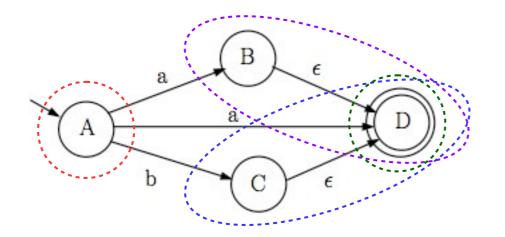
- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to "collapse" null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go "for free?"
 - Formally: ϵ -closure(s) = {s} \cup { t \in S | (s, $\epsilon \rightarrow$ t) \in δ }
 - Simulates running all possible paths through the NFA



```
Null closure of A = { A }
Null closure of B = { B, D }
Null closure of C = { C, D }
Null closure of D = { D }
```

Subset construction

- Basic idea: create DFA incrementally
 - Each DFA state represents a subset of NFA states
 - Use null closure operation to "collapse" null/epsilon transitions
 - Null closure: all states reachable via epsilon transitions
 - Essentially: where can we go "for free?"
 - Formally: ϵ -closure(s) = {s} \cup { t \in S | (s, $\epsilon \rightarrow$ t) \in δ }
 - Simulates running all possible paths through the NFA



```
Null closure of A = { A }

Null closure of B = { B, D }

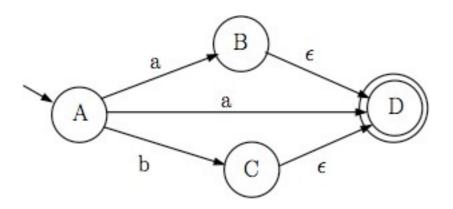
Null closure of C = { C, D }

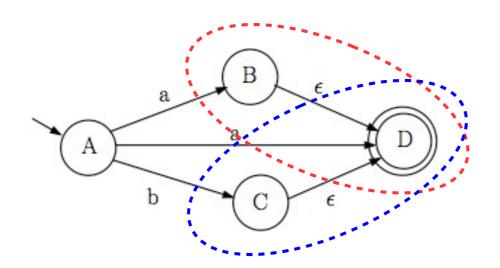
Null closure of D = { D }
```

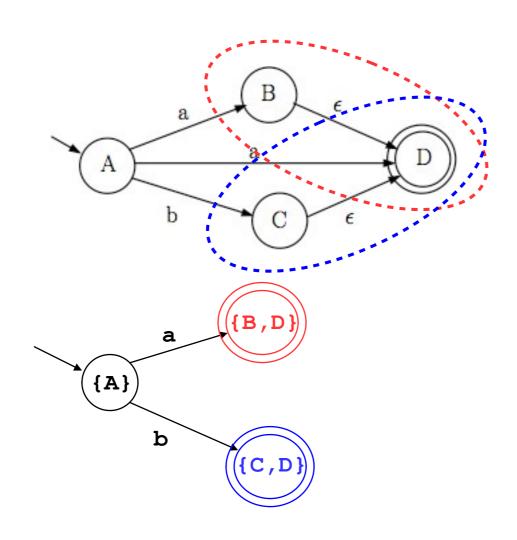
Formal Algorithm

```
SubsetConstruction(S, \Sigma, s<sub>0</sub>, S<sub>A</sub>, \delta):
```

$$t_0 := \varepsilon$$
-closure(s_0)
 $S' := \{ t_0 \}$ $S'_A := \emptyset$ $W := \{ t_0 \}$
while $W \neq \emptyset$:
choose u in W and remove it from W
for each c **in** Σ :
 $t := \varepsilon$ -closure($\delta(u,c)$)
 $\delta'(u,c) = t$
if t **is not in** S' **then**
add t to S' and W
add t to S'_A if any state in t is also in S_A
return (S' , Σ , t_0 , S'_A , δ')







SubsetConstruction(S, Σ , s₀, S_A, δ):

 $t_0 := \varepsilon$ -closure(s_0)

$$S' := \{ t_0 \}$$
 $S'_A := \emptyset$ $W := \{ t_0 \}$

while $W \neq \emptyset$:

choose *u* in *W* and remove it from *W*

for each c in Σ :

 $t := \varepsilon$ -closure($\delta(u,c)$)

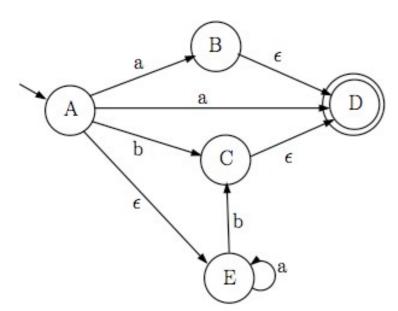
$$\delta'(u,c) = t$$

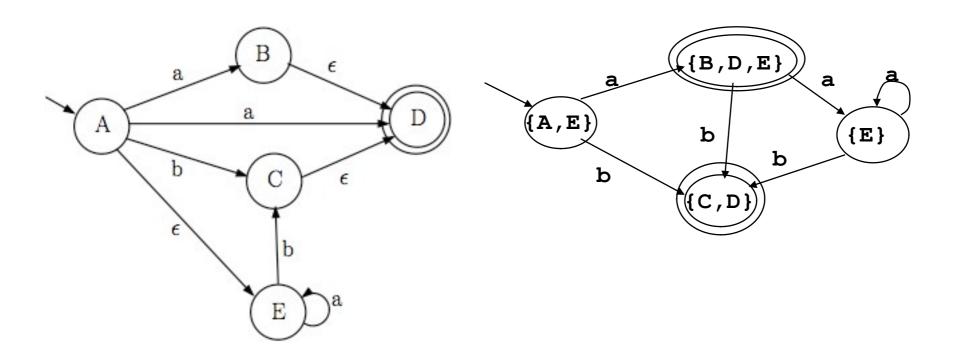
if t is not in S' then

add t to S' and W

add t to S'_A if there exists a state v in t that is also in S_A

return (S', Σ , t_0 , S'_A, δ ')



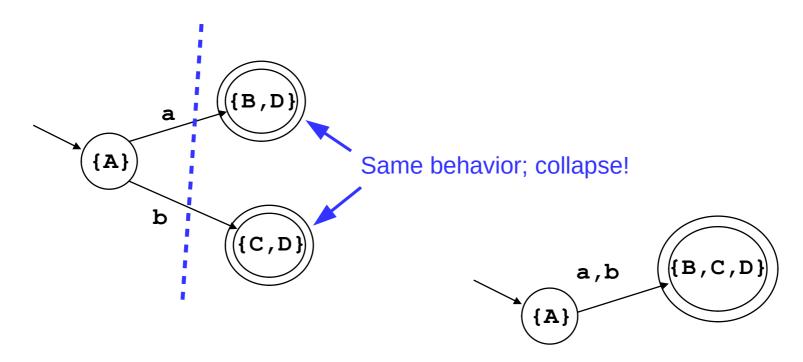


Algorithms

- Subset construction is a fixed-point algorithm
 - Textbook: "Iterated application of a monotone function"
 - Basically: A loop that is mathematically guaranteed to terminate at some point
 - When it terminates, some desirable property holds
 - In the case of subset construction: the NFA has been converted to a DFA!

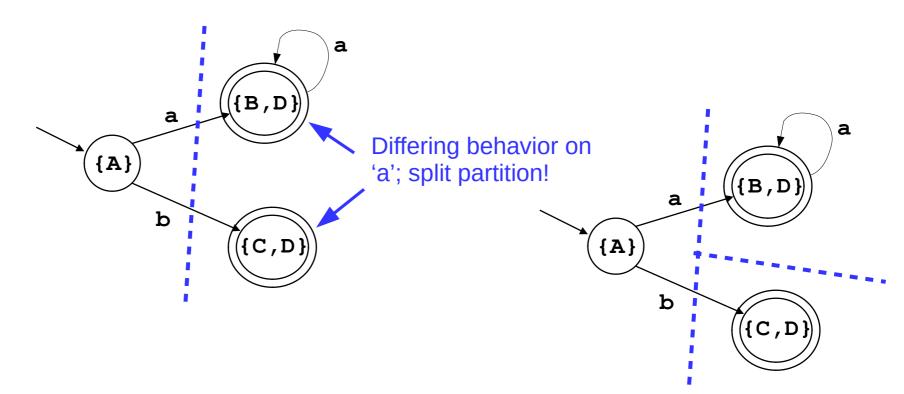
Hopcroft's DFA Minimization

- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with differing behaviors
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn't
- When done, each partition becomes a single state



Hopcroft's DFA Minimization

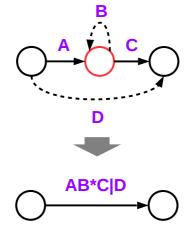
- Split into two partitions (final & non-final)
- Keep splitting a partition while there are states with differing behaviors
 - Two states transition to differing partitions on the same symbol
 - Or one state transitions on a symbol and another doesn't
- When done, each partition becomes a single state



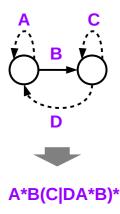
Kleene's Construction

- Replace edge labels with REs
 - "a" → "a" and "a,b" → "a|b"
- Eliminate states by combining REs
 - See pattern below; apply pairwise around each state to be eliminated
 - Repeat until only one or two states remain
- Build final RE
 - One state with "A" self-loop → "A*"
 - Two states: see pattern below

Eliminating states:



Combining final two states:

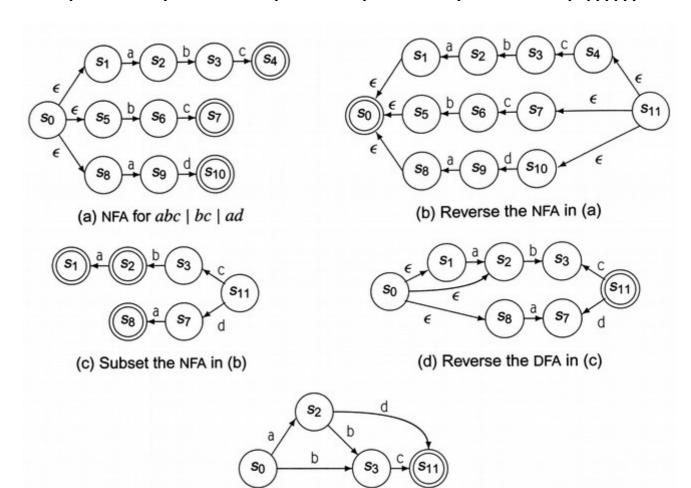


Brzozowski's Algorithm

- Direct NFA → minimal DFA conversion
- Sub-procedures:
 - Reverse(n): invert all transitions in NFA n, adding a new start state connected to all old final states
 - Subset(n): apply subset construction to NFA n
 - Reach(n): remove any part of NFA n unreachable from start state
- Apply them all in order three times to get minimal DFA
 - First time eliminates duplicate suffixes
 - Second time eliminates duplicate prefixes
 - MinDFA(n) = Reach(Subset(Reverse(Reach(Subset(Reverse(n))))))
 - Potentially easier to code than Hopcroft's algorithm

Brzozowski's Algorithm

MinDFA(n) = Reach(Subset(Reverse(Reach(Subset(Reverse(n))))))



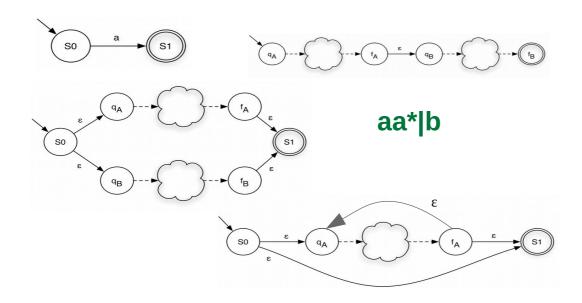
Example from EAC (p.76)

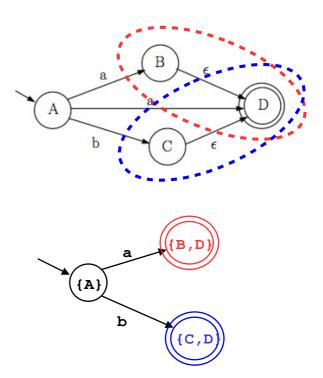
(e) Subset the NFA in (d) to Produce the Minimal DFA

■ FIGURE 2.19 Minimizing a DFA with Brzozowski's Algorithm.

NFA/DFA complexity

- What are the time and space requirements to...
 - Build an NFA?
 - Run an NFA?
 - Build a DFA?
 - Run a DFA?





NFA/DFA complexity

Thompson's construction

- At most two new states and four transitions per regex character
- Thus, a linear space increase with respect to the # of regex characters
- Constant # of operations per increase means linear time as well

NFA execution

- Proportional to both NFA size and input string size
- Must track multiple simultaneous "current" states

Subset construction

- Potential exponential state space explosion
- A n-state NFA could require up to 2ⁿ DFA states
- However, this rarely happens in practice

DFAs execution

- Proportional to input string size only (only track a single "current" state)

NFA/DFA complexity

- NFAs build quicker (linear) but run slower
 - Better if you will only run the FA a few times
 - Or if you need features that are difficult to implement with DFAs
- DFAs build slower but run faster (linear)
 - Better if you will run the FA many times

	NFA	DFA
Build time	O(<i>m</i>)	$O(2^m)$
Run time	$O(m \times n)$	O(n)

m = length of regular expression n = length of input string

Lexers

Auto-generated

- Table-driven: generic scanner, auto-generated tables
- Direct-coded: hard-code transitions using jumps
- Common tools: lex/flex and similar

Hand-coded

- Better I/O performance (i.e., buffering)
- More efficient interfacing w/ other phases
- This is what we'll do for P2

Handling Keywords

- Issue: keywords are valid identifiers
- Option 1: Embed into NFA/DFA
 - Separate regex for keywords
 - Easier/faster for generated scanners
- Option 2: Use lookup table
 - Scan as identifier then check for a keyword
 - Easier for hand-coded scanners
 - (Thus, this is probably easier for P2)

Handling Whitespace

- Issue: whitespace is usually ignored
 - Write a regex and remove it before each new token
- Side effect: some results are counterintuitive
 - Is this a valid token? "3abc"
 - For now, it's actually two!
 - We'll reject them later, in the parsing phase