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Discussion question

● What is a compiler?



  

Automated translation

● A compiler is a computer program that automatically 
translates other programs from one language to another
– (usually from a human-readable language to a machine-

executable language, but not necessarily)
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Automated translation

● Compilation vs. interpretation:
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Discussion question

● Why should we study compilers?
– (besides getting systems elective credit...)



  

Compilers: a convergent topic

● Data structures
– CS 240

● Architectures, machine languages, and operating systems
– CS 261, CS 450

● Automata and language theory
– CS 327, CS 430

● Graph algorithms
– CS 327

● Software and systems engineering
– CS 345, CS 361

● Greedy, heuristic, and fixed-point algorithms
– CS 452



  

Reasons to study compilers

● Shows how many areas of CS can be combined to solve 
a truly "hard" problem (automated language translation)

● Bridges theory vs. implementation gap
– Theory informs implementation
– Applicable in many other domains

● Practical experience with large(er) software systems
– My master copy is nearly 7K LOC
– Of this, you will re-write over 1K LOC this semester

● Exposure to open problems in CS
– Many optimization issues are subject to ongoing research



  

Course goal

● Fundamental question
– "How do compilers translate from a human-readable 

language to a machine-executable language?"

● After this course, your response should be:
– "It's really cool! Let me tell you..."

???1. Step A
2. Step B
…
6. Profit!!!



  

Course design theory

● First, a bit of background ...



  

Course design theory

● Big ideas
– E.g., "A compiler is a large software system consisting of a sequence of phases"

● "Enduring understandings" (stuff you should remember in five years)
– E.g, "Large problems can sometimes be solved by composing existing solutions 

to smaller problems."
● Learning objectives (stuff you should remember at the end of the course)

– E.g., "Identify the technical challenges of building a large software system such 
as a compiler."

● Activities and assignments flow from learning objectives
– E.g., "Draw a diagram illustrating the major phases of a modern compiler."

● Exams reflect activities and assignments
● Goal: “engaged” and effective learning



  

Learning objectives

● Identify and discuss the technical and social challenges of building a 
large software system such as a compiler.

● Develop and analyze formal descriptions of computer languages.
● Apply finite automata theory to build recognizers (lexers) for regular 

languages.
● Apply pushdown automata theory to build recognizers (parsers) for 

context-free languages.
● Evaluate the role of static analysis in automated program translation.
● Apply tree traversals to convert a syntax tree to low-level code.
● Discuss the limitations that an architecture or execution environment 

places on the generation of machine code.
● Describe common optimizations and evaluate the tradeoffs associated 

with good optimization.



  

Course format

● Website:  https://w3.cs.jmu.edu/lam2mo/cs432/
– Make sure you’re using the right year’s website!

● Weekly schedule (roughly)

● Formative vs. summative assessment
– Formative: quizzes and activities (20% of final grade)
– Summative: projects and exams (80% of final grade)

https://w3.cs.jmu.edu/lam2mo/cs432/


  

Course textbook

● Engineering a Compiler, 2nd Edition
– Keith Cooper and Linda Torczon
– 1st chapter scanned; posted under “Files” on Canvas
– Reserve copy at Rose library

● Decaf/ILOC references
– PDFs on website



  

Semester-long project

● Compiler for "Decaf" language
– Implementation in Java
– Maven build system w/ fully-integrated test suite
– Five major projects: "pieces" of the full system
– Compiles to ILOC (new machine language from textbook)

● Submission: code + reflection + review + response
– Code can be written in teams of two

● Benefits vs. costs of working in a team

– Reflection must be submitted individually
– Individual graded code reviews due a week later
– Review responses (how did your reviewer do?)



  

Course policies

● Questions?



  

Compiler rule #1

● "The compiler must preserve the meaning of the 
program being compiled."
– What is a program's meaning?



  

Intermediate representation

● Compilers encode a program's meaning using an 
intermediate representation (IR)
– Tree- or graph-based: abstract syntax tree (AST), 

control flow graph (CFG)
– Linear: register transfer language (RTL), Java bytecode, 

intermediate language for an optimizing compiler (ILOC)

=
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+

b c
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load b → r1
load c → r2
add  r1, r2 → r3
load d → r4
mult r3, r4 → r5
store r5 → a



  

Standard compiler framework

● Front end: understand the program (src→IR)
● Back end: encode in target language (IR→targ)
● Primary benefit: easier re-targeting to different languages 

or architectures
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Modern compiler framework

● Multiple front-end passes
– Lexing/scanning and parsing
– Tree analysis processing

● Multiple middle-end passes
– Local optimizations
– Global optimizations

● Multiple back-end passes
– Instruction selection/scheduling
– Register allocation
– Linking
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Compiler rule #2

● The compiler should help the programmer in some way
– What does help mean?



  

Discussion question

● What would be your design goals for a compiler?
– E.g., what functionality or properties would you like it to have?



  

Compiler design goals

● Translate to target language/architecture
● Optimize for fast execution
● Minimize memory/energy use
● Catch software defects early
● Provide helpful error messages
● Run quickly
● Be easily extendable



  

Differing design goals

● What differences might you expect in compilers 
designed for the following applications?
– A just-in-time compiler for running server-side user scripts
– A compiler used in an introductory programming course
– A compiler used to build scientific computing codes to run on 

a massively-parallel supercomputer
– A compiler that targets a number of diverse systems
– A compiler that targets an embedded sensor network platform



  

Decaf language

● Simple imperative language similar to C or Java
● Example:

// add.decaf - simple addition example

def int add(int x, int y)
{
    return x + y;
}

def int main()
{
    int a;
    a = 3;
    return add(a, 2);
}

$ java -jar decaf-1.0.jar -i add.decaf
5

reference compiler
“interpret” flag 
and source file



  

Before Wednesday

● Readings
– "Engineering a Compiler" (EAC) Ch. 1 (23 pages)
– Decaf reference ("Resources" page on website)

● Tasks
– Complete first reading quiz on Canvas
– Complete course intro survey on Canvas
– Download the reference compiler from Canvas ("Files")
– Write some code in Decaf
– Install the JDK and Maven on your system



  

Upcoming events

● CS senior night
– Wednesday, Sept. 5, 5:00-6:30pm
– Graduation info, job fairs, photos, etc.
– Senior students only

● CISE career fair
– Wednesday, Sept. 19, time/location TBD
– Over 20 companies looking for technology majors
– Internships and full-time positions



  

See you Wednesday

● Have a great semester!
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