

CS 432
Fall 2018

Mike Lam, Professor

Compilers
Advanced Systems Elective

Discussion question

● What is a compiler?

Automated translation

● A compiler is a computer program that automatically
translates other programs from one language to another
– (usually from a human-readable language to a machine-

executable language, but not necessarily)

Compiler

Program
in

Source
Language

Program
in

Target
Language

Automated translation

● Compilation vs. interpretation:

Compiler

Program
in

Source
Language

Program
in

Target
Language

Interpreter

Program
in

Source
Language

Results

Discussion question

● Why should we study compilers?
– (besides getting systems elective credit...)

Compilers: a convergent topic

● Data structures
– CS 240

● Architectures, machine languages, and operating systems
– CS 261, CS 450

● Automata and language theory
– CS 327, CS 430

● Graph algorithms
– CS 327

● Software and systems engineering
– CS 345, CS 361

● Greedy, heuristic, and fixed-point algorithms
– CS 452

Reasons to study compilers

● Shows how many areas of CS can be combined to solve
a truly "hard" problem (automated language translation)

● Bridges theory vs. implementation gap
– Theory informs implementation
– Applicable in many other domains

● Practical experience with large(er) software systems
– My master copy is nearly 7K LOC
– Of this, you will re-write over 1K LOC this semester

● Exposure to open problems in CS
– Many optimization issues are subject to ongoing research

Course goal

● Fundamental question
– "How do compilers translate from a human-readable

language to a machine-executable language?"

● After this course, your response should be:
– "It's really cool! Let me tell you..."

???1. Step A
2. Step B
…
6. Profit!!!

Course design theory

● First, a bit of background ...

Course design theory

● Big ideas
– E.g., "A compiler is a large software system consisting of a sequence of phases"

● "Enduring understandings" (stuff you should remember in five years)
– E.g, "Large problems can sometimes be solved by composing existing solutions

to smaller problems."
● Learning objectives (stuff you should remember at the end of the course)

– E.g., "Identify the technical challenges of building a large software system such
as a compiler."

● Activities and assignments flow from learning objectives
– E.g., "Draw a diagram illustrating the major phases of a modern compiler."

● Exams reflect activities and assignments
● Goal: “engaged” and effective learning

Learning objectives

● Identify and discuss the technical and social challenges of building a
large software system such as a compiler.

● Develop and analyze formal descriptions of computer languages.
● Apply finite automata theory to build recognizers (lexers) for regular

languages.
● Apply pushdown automata theory to build recognizers (parsers) for

context-free languages.
● Evaluate the role of static analysis in automated program translation.
● Apply tree traversals to convert a syntax tree to low-level code.
● Discuss the limitations that an architecture or execution environment

places on the generation of machine code.
● Describe common optimizations and evaluate the tradeoffs associated

with good optimization.

Course format

● Website: https://w3.cs.jmu.edu/lam2mo/cs432/
– Make sure you’re using the right year’s website!

● Weekly schedule (roughly)

● Formative vs. summative assessment
– Formative: quizzes and activities (20% of final grade)
– Summative: projects and exams (80% of final grade)

https://w3.cs.jmu.edu/lam2mo/cs432/

Course textbook

● Engineering a Compiler, 2nd Edition
– Keith Cooper and Linda Torczon
– 1st chapter scanned; posted under “Files” on Canvas
– Reserve copy at Rose library

● Decaf/ILOC references
– PDFs on website

Semester-long project

● Compiler for "Decaf" language
– Implementation in Java
– Maven build system w/ fully-integrated test suite
– Five major projects: "pieces" of the full system
– Compiles to ILOC (new machine language from textbook)

● Submission: code + reflection + review + response
– Code can be written in teams of two

● Benefits vs. costs of working in a team

– Reflection must be submitted individually
– Individual graded code reviews due a week later
– Review responses (how did your reviewer do?)

Course policies

● Questions?

Compiler rule #1

● "The compiler must preserve the meaning of the
program being compiled."
– What is a program's meaning?

Intermediate representation

● Compilers encode a program's meaning using an
intermediate representation (IR)
– Tree- or graph-based: abstract syntax tree (AST),

control flow graph (CFG)
– Linear: register transfer language (RTL), Java bytecode,

intermediate language for an optimizing compiler (ILOC)

=

a *

+

b c

d

load b → r1
load c → r2
add r1, r2 → r3
load d → r4
mult r3, r4 → r5
store r5 → a

Standard compiler framework

● Front end: understand the program (src→IR)
● Back end: encode in target language (IR→targ)
● Primary benefit: easier re-targeting to different languages

or architectures

CompilerProgram in
Source

Language A

Program in
Target

Language 1

Front End

Back End

IR

Program in
Source

Language B

Program in
Target

Language 1

Front End

Modern compiler framework

● Multiple front-end passes
– Lexing/scanning and parsing
– Tree analysis processing

● Multiple middle-end passes
– Local optimizations
– Global optimizations

● Multiple back-end passes
– Instruction selection/scheduling
– Register allocation
– Linking

Compiler

Front
End

Back
EndIR

Middle
End IR

Compiler

Compiler rule #2

● The compiler should help the programmer in some way
– What does help mean?

Discussion question

● What would be your design goals for a compiler?
– E.g., what functionality or properties would you like it to have?

Compiler design goals

● Translate to target language/architecture
● Optimize for fast execution
● Minimize memory/energy use
● Catch software defects early
● Provide helpful error messages
● Run quickly
● Be easily extendable

Differing design goals

● What differences might you expect in compilers
designed for the following applications?
– A just-in-time compiler for running server-side user scripts
– A compiler used in an introductory programming course
– A compiler used to build scientific computing codes to run on

a massively-parallel supercomputer
– A compiler that targets a number of diverse systems
– A compiler that targets an embedded sensor network platform

Decaf language

● Simple imperative language similar to C or Java
● Example:

// add.decaf - simple addition example

def int add(int x, int y)
{
 return x + y;
}

def int main()
{
 int a;
 a = 3;
 return add(a, 2);
}

$ java -jar decaf-1.0.jar -i add.decaf
5

reference compiler
“interpret” flag
and source file

Before Wednesday

● Readings
– "Engineering a Compiler" (EAC) Ch. 1 (23 pages)
– Decaf reference ("Resources" page on website)

● Tasks
– Complete first reading quiz on Canvas
– Complete course intro survey on Canvas
– Download the reference compiler from Canvas ("Files")
– Write some code in Decaf
– Install the JDK and Maven on your system

Upcoming events

● CS senior night
– Wednesday, Sept. 5, 5:00-6:30pm
– Graduation info, job fairs, photos, etc.
– Senior students only

● CISE career fair
– Wednesday, Sept. 19, time/location TBD
– Over 20 companies looking for technology majors
– Internships and full-time positions

See you Wednesday

● Have a great semester!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

