
  

CS 432
Fall 2017

Mike Lam, Professor

List Scheduling



  

Instruction Scheduling

● Modern architectures expose many opportunities for optimization
– Superscalar processing (multiple functional units)
– Some instructions require fewer cycles
– Instruction pipelining
– Speculative execution

● Stall – delay caused by having to wait for an operand to load
● Scheduling: re-order instructions to improve pipelining

– Must not modify program semantics
● Issue: data dependencies

– May re-order other statements to maximize utilization and prevent stalls
– Main algorithm: list scheduling



  

Example

loadAI [BP-4] => r1
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
store AI r8 => [BP-20]

loadAI [BP-4] => r1
loadAI [BP-8] => r3
loadAI [BP-12] => r5
add r1, r1 => r2
mult r2, r3 => r4
loadAI [BP-16] => r7
mult r4, r5 => r6
mult r6, r7 => r8
store AI r8 => [BP-20]

● Which program is preferable?
● Assumptions:

– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency



  

Example

loadAI [BP-4] => r1
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
store AI r8 => [BP-20]

loadAI [BP-4] => r1
loadAI [BP-8] => r3
loadAI [BP-12] => r5
add r1, r1 => r2
mult r2, r3 => r4
loadAI [BP-16] => r7
mult r4, r5 => r6
mult r6, r7 => r8
store AI r8 => [BP-20]

r1

r2 r3

r4 r5

r6 r7

r8

● Which program is preferable?
● Assumptions:

– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency



  

Example

● Which program is preferable?
● Assumptions:

– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency

loadAI [BP-4] => r1
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
store AI r8 => [BP-20]

loadAI [BP-4] => r1
loadAI [BP-8] => r3
loadAI [BP-12] => r5
add r1, r1 => r2
mult r2, r3 => r4
loadAI [BP-16] => r7
mult r4, r5 => r6
mult r6, r7 => r8
store AI r8 => [BP-20]

1
4
5
8
9
12
13
16
18

1
2
3
4
5
6
7
9
11

r1

r2 r3

r4 r5

r6 r7

r8



  

Data Dependence

● Data dependency (x = _; _ = x)
– Read after write
– Hard constraint

● Antidependency (_ = x; x = _)
– Write after read
– Can rename to avoid (could require more register spills)

● Dependency graph
– Graph for each basic block

● Could have multiple roots; technically a forest of trees

– Nodes for each instruction
– Edges represent data dependencies

● Edge (n1, n2) means that n2 uses a result of n1

a

b c

d

e f

g



  

List Scheduling

● Prep work
– Rename to avoid antidependencies
– Build data dependence graph
– Assign priority for each instruction

● Usually based on node height (minimize critical path length)

● Iteratively build schedule
– Track a set of "ready" instructions

● No remaining unresolved data dependencies; i.e., can be issued

– For each cycle:
● Check all currently executing instructions for any that have finished

– Add any new "ready" dependents to set
● Start executing a new "ready" instruction (if there are any)

– Choose the one with the highest priority



  

Example

● Schedule the following code:
– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency

a) loadAI [BP-4] => r2
b) storeAI r2 => [BP-8]
c) loadAI [BP-12] => r3
d) add r3, r4 => r3
e) add r3, r2 => r3
f) storeAI r3 => [BP-16]
g) storeAI r7 => [BP-20]



  

Example

● Schedule the following code:
– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency

a) loadAI [BP-4] => r2
b) storeAI r2 => [BP-8]
c) loadAI [BP-12] => r3
d) add r3, r4 => r3
e) add r3, r2 => r3
f) storeAI r3 => [BP-16]
g) storeAI r7 => [BP-20]

a

b

c

d

e

g

f



  

Example

● Schedule the following code:
– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency

a) loadAI [BP-4] => r2
b) storeAI r2 => [BP-8]
c) loadAI [BP-12] => r3
d) add r3, r4 => r3
e) add r3, r2 => r3
f) storeAI r3 => [BP-16]
g) storeAI r7 => [BP-20]

[1]
[4]
[5]
[8]
[9]
[10]
[11]

a

b

c

d

e

g

f



  

Example

● Schedule the following code:
– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency

a) loadAI [BP-4] => r2
b) storeAI r2 => [BP-8]
c) loadAI [BP-12] => r3
d) add r3, r4 => r3
e) add r3, r2 => r3
f) storeAI r3 => [BP-16]
g) storeAI r7 => [BP-20]

[1] c) loadAI [BP-12] => r3
[2] a) loadAI [BP-4] => r2
[3] g) storeAI r7 => [BP-20]
[4] d) add r3, r4 => r3
[5] e) add r3, r2 => r4
[6] f) storeAI r3 => [BP-16]
[7] b) storeAI r2 => [BP-8]

[1]
[4]
[5]
[8]
[9]
[10]
[11]

a

b

c

d

e

g

f



  

Example

loadAI [BP-4] => r1
add r1, r1 => r2
loadAI [BP-8] => r3
mult r2, r3 => r4
loadAI [BP-12] => r5
mult r4, r5 => r6
loadAI [BP-16] => r7
mult r6, r7 => r8
store AI r8 => [BP-20]

r1

r2 r3

r4 r5

r6 r7

r8

● Schedule this program from earlier
● Assumptions:

– Loads and stores have a 3-cycle latency
– Multiplications have a 2-cycle latency
– All other instructions have a 1-cycle latency



  

Instruction Priorities

● Usually based on node height first
– Minimizes critical path

● Many methods for tie-breaking
– Node's rank (# of successors; breadth-first search)
– Node's descendant count
– Latency (maximize resource efficiency)
– Resource ordering (maximize resource efficiency)
– Source code ordering (minimize reordering)
– No clear winner here!



  

Tradeoffs

● Instruction scheduling vs. register allocation
– Fewer registers → more sequential code
– More registers → more possibilities for parallelism

● Forward vs. backward list scheduling
– Schedule latest instructions first

● Similar to backward data flow analysis

– List scheduling is cheap; just run several variants to see which 
works better for particular code segments


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

