

CS 432
Fall 2017

Mike Lam, Professor

Register Allocation

storeAI a => b
loadAI b => c

storeAI a => b
i2i a => c

Compilers

int main() {
 int x
 = 4 + 5;
 return x;
}

Source code Tokens Syntax tree Checked AST
+ Symtables

Lexing
(P2)

Parsing
(P3)

Analysis
(P4)

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

✓

✓ ✓

✓ ✓

main:
 loadI 4 => r1
 loadI 5 => r2
 add r1, r2 => r3
 i2i r3 => RET

Linear IR

main:
 loadI 4 => r1
 addI r1, 5 => RET

Optimized
Linear IR

IR Code Gen
(P5)

Optimization
Passes

Machine
Code Gen

Optimization (Ch. 8-10)

● Local
– Local value numbering (8.4.1)
– Tree-height balancing (8.4.2)

● Regional
– Superlocal value numbering (8.5.1)
– Loop unrolling (8.5.2)

● Global
– Constant propagation (9.3.6, 10.7.1)
– Dead code elimination (10.2)
– Global code placement (8.6.2)
– Lazy code motion (10.3)

● Whole-program
– Inline substitution (8.7.1)
– Procedure placement (8.7.2)

Asides:
Data-flow analysis (Ch. 9)
Liveness analysis (8.5.1, 9.2.2)
Single static assignment (9.3)

Machine Code Gen (Ch. 11-13)

● Translate from linear IR to machine code
– Often, we can just emit assembly
– Use built-in system assembler and linker to create final executable

● Issues:
– Translation from IR instructions to machine code instructions:

instruction selection (Ch. 11)
– Arrangement of machine code instructions for optimal pipelining:

instruction scheduling (Ch. 12)
– Assignment of registers to minimize memory and HDD accesses:

register allocation (Ch. 13)

Instruction Selection

● Choose machine code instructions to replace IR
– Complexity is highly dependent on target architecture
– CISC provides more options than RISC

● Algorithms
– Treewalk routine (similar to P5)
– Tree-pattern matching / tiling
– Peephole optimization

Peephole Optimization

● Scan linear IR with sliding window ("peephole")
– Look for common inefficient patterns
– Replace with known equivalent sequences

storeAI r5 => [bp+8]
loadAI [bp+8] => r7

storeAI r5 => [bp+8]
i2i r5 => r7

storeAI a => b
loadAI b => c

storeAI a => b
i2i a => c

Example:

Generalized pattern:

Instruction Scheduling

● Modern architectures expose many opportunities for
optimization
– Some instructions require fewer cycles
– Instruction pipelining
– Speculative execution / branch prediction
– Multicore shared-memory processors

● Scheduling: re-order instructions to improve speed
– Must not modify program semantics
– Maximize utilization of CPU and memory resources
– Main algorithm: list scheduling (next week!)

Register Allocation

● Maximizing register use is very important
– Registers are the lowest-latency memory locations
– Issue: limited number of registers
– Reduce the # of registers used to match the target system
– Program using n registers => Program using m registers (n > m)

● Allocation vs. assignment
– Allocation: map a virtual register space to a physical register space

● This is hard (NP-complete for any realistic situation)

– Assignment: map a valid allocation to actual register names
● This is easy (linear or polynomial)

Local Allocation

● Top-down local register allocation
– Compute a priority for each virtual register

● Frequency of access to that register

– Sort by priority, highest to lowest
– Assign registers in order, highest priority first
– Rewrite the code

● General idea: prioritize most-often-accessed virtual registers
– Allocate to physical registers in priority order
– Very simple to implement
– Static per-block allocations are not always optimal

● Access patterns may change throughout block

Local Allocation

● Bottom-up local register allocation
– Scan each block instruction-by-instruction
– For each instruction:

● Examine virtual registers
● Ensure operands are in physical registers (load them if they’re not)
● Allocate physical register for result

– May need to "spill" virtual registers
● Save their values to the stack temporarily
● This frees up a physical register

THIS IS YOUR LAST DECAF PROJECT

Bottom-up local register allocation

for each physical register reg:

 name[reg] = -1 # contents of reg (virtual id)

 next[reg] = INF # index of next reference

for each virtual register vr:

 loc[vr] = -1 # location of vr (physical id or BP offset)

 spilled[vr] = false # is vr currently spilled?

for each instruction i:

 for each vr read in i:

 reg = ensure(vr)

 replace vr with reg in i

 if vr is not needed after i then free(vr)

 for each vr written in i:

 reg = allocate(vr)

 replace vr with reg in i

 if vr is not needed after i then free(vr)

ensure(vr):

 if vr is in reg:

 return reg

 else:

 reg = allocate(vr)

 emit code “reg ← vr”

 return reg

allocate(vr):

 if reg is available:

 return reg

 else:

 find reg to spill

 spill(reg)

 return reg

Bottom-up local register allocation

add:
 loadAI [bp+8] => r0
 loadAI [bp+12] => r1
 add r0, r1 => r0
 i2i r0 => ret
 return

main:
 loadI 3 => r0
 storeAI r0 => [bp-4]
 loadAI [bp-4] => r0
 loadI 2 => r1
 param r1
 param r0
 call add
 i2i ret => r0
 i2i r0 => ret
 return

add:
 loadAI [bp+8] => r1
 loadAI [bp+12] => r2
 add r1, r2 => r3
 i2i r3 => ret
 return

main:
 loadI 3 => r4
 storeAI r4 => [bp-4]
 loadAI [bp-4] => r5
 loadI 2 => r6
 param r6
 param r5
 call add
 i2i ret => r7
 i2i r7 => ret
 return

Bottom-up local register allocation

gcd:
l1:
 loadAI [bp+12] => r0
 loadI 1 => r1
 cmp_GE r0, r1 => r0
 cbr r0 => l2, l3
l2:
 loadAI [bp+12] => r0
 loadI 0 => r1
 store r0 => [r1]
 loadAI [bp+8] => r0
 loadAI [bp+12] => r1
 div r0, r1 => r2
 mult r1, r2 => r1
 sub r0, r1 => r0
 storeAI r0 => [bp+12]
 loadI 0 => r0
 load [r0] => r0
 storeAI r0 => [bp+8]
 jump l1
l3:
 loadAI [bp+8] => r0
 i2i r0 => ret
 return

gcd:
l1:
 loadAI [bp+12] => r1
 loadI 1 => r2
 cmp_GE r1, r2 => r3
 cbr r3 => l2, l3
l2:
 loadAI [bp+12] => r4
 loadI 0 => r5
 store r4 => [r5]
 loadAI [bp+8] => r6
 loadAI [bp+12] => r7
 div r6, r7 => r8
 mult r7, r8 => r9
 sub r6, r9 => r10
 storeAI r10 => [bp+12]
 loadI 0 => r11
 load [r11] => r12
 storeAI r12 => [bp+8]
 jump l1
l3:
 loadAI [bp+8] => r13
 i2i r13 => ret
 return

Local vs. global allocation

● Local allocation handles each basic block separately
– Will miss inter-block dependencies

● Global allocation handles all basic blocks in a procedure
– Does NOT consider inter-procedural dependencies
– This is why calling conventions are important

● I.e., caller-save vs. callee-save and return value

● Decaf project
– Because we used SSA in P5 and always load/store to

memory, no virtual registers will be live at the entrance or exit
of any block (so no inter-block dependencies)

– Thus, we can use local register allocation in P6

Global Allocation

● Determine live range for each virtual register
– Use results from liveness analysis

● Build interference graph
– Node for each virtual register
– Edges between registers with interfering live ranges

● Attempt to compute graph k-coloring
– k is the number of physical registers
– Top-down and bottom-up differ in coloring order
– If successful, done!
– If not successful, spill some values and try again

● Need a robust way to pick which values to spill
● Alternatively, split live ranges at carefully-chosen points

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR1

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
2
: y=10

LR1 LR2

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR1 LR2

LR3

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR
4
: z=x+y

LR1 LR2

LR3 LR4

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR
4
: z=x+y

LR
5
: w=z+1

LR1 LR2

LR3 LR4

LR5

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1

LR
1
: x={4,6}

LR
3
: y={5,7}

LR
2
: y=10

LR
4
: z=x+y

LR
5
: w=z+1

LR1 LR2

LR3 LR4

LR5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

