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Register Allocation

storeAI a => b
loadAI  b => c

storeAI a => b
i2i     a => c



  

Compilers

int main() {
    int x
      = 4 + 5;
    return x;
}

Source code Tokens Syntax tree Checked AST
+ Symtables

Lexing
(P2)

Parsing
(P3)

Analysis
(P4)

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

✓

✓ ✓

✓ ✓

Checked AST
+ Symtables

✓

✓ ✓

✓ ✓

main:
  loadI 4 => r1
  loadI 5 => r2
  add r1, r2 => r3
  i2i r3 => RET

Linear IR

main:
  loadI 4 => r1
  addI r1, 5 => RET

Optimized
Linear IR

IR Code Gen
(P5)

Optimization
Passes

Machine
Code Gen



  

Optimization (Ch. 8-10)

● Local
– Local value numbering (8.4.1)
– Tree-height balancing (8.4.2)

● Regional
– Superlocal value numbering (8.5.1)
– Loop unrolling (8.5.2)

● Global
– Constant propagation (9.3.6, 10.7.1)
– Dead code elimination (10.2)
– Global code placement (8.6.2)
– Lazy code motion (10.3)

● Whole-program
– Inline substitution (8.7.1)
– Procedure placement (8.7.2)

Asides:
Data-flow analysis (Ch. 9)
Liveness analysis (8.5.1, 9.2.2)
Single static assignment (9.3)



  

Machine Code Gen (Ch. 11-13)

● Translate from linear IR to machine code
– Often, we can just emit assembly
– Use built-in system assembler and linker to create final executable

● Issues:
– Translation from IR instructions to machine code instructions: 

instruction selection (Ch. 11)
– Arrangement of machine code instructions for optimal pipelining: 

instruction scheduling (Ch. 12)
– Assignment of registers to minimize memory and HDD accesses: 

register allocation (Ch. 13)



  

Instruction Selection

● Choose machine code instructions to replace IR
– Complexity is highly dependent on target architecture
– CISC provides more options than RISC

● Algorithms
– Treewalk routine (similar to P5)
– Tree-pattern matching / tiling
– Peephole optimization



  

Peephole Optimization

● Scan linear IR with sliding window ("peephole")
– Look for common inefficient patterns
– Replace with known equivalent sequences

storeAI r5 => [bp+8]
loadAI [bp+8] => r7

storeAI r5 => [bp+8]
i2i r5 => r7

storeAI a => b
loadAI  b => c

storeAI a => b
i2i     a => c

Example:

Generalized pattern:



  

Instruction Scheduling

● Modern architectures expose many opportunities for 
optimization
– Some instructions require fewer cycles
– Instruction pipelining
– Speculative execution / branch prediction
– Multicore shared-memory processors

● Scheduling: re-order instructions to improve speed
– Must not modify program semantics
– Maximize utilization of CPU and memory resources
– Main algorithm: list scheduling (next week!)



  

Register Allocation

● Maximizing register use is very important
– Registers are the lowest-latency memory locations
– Issue: limited number of registers
– Reduce the # of registers used to match the target system
– Program using n registers => Program using m registers (n > m)

● Allocation vs. assignment
– Allocation: map a virtual register space to a physical register space

● This is hard (NP-complete for any realistic situation)

– Assignment: map a valid allocation to actual register names
● This is easy (linear or polynomial)



  

Local Allocation

● Top-down local register allocation
– Compute a priority for each virtual register

● Frequency of access to that register

– Sort by priority, highest to lowest
– Assign registers in order, highest priority first
– Rewrite the code

● General idea: prioritize most-often-accessed virtual registers
– Allocate to physical registers in priority order
– Very simple to implement
– Static per-block allocations are not always optimal

● Access patterns may change throughout block



  

Local Allocation

● Bottom-up local register allocation
– Scan each block instruction-by-instruction
– For each instruction:

● Examine virtual registers
● Ensure operands are in physical registers (load them if they’re not)
● Allocate physical register for result

– May need to "spill" virtual registers
● Save their values to the stack temporarily
● This frees up a physical register

THIS IS YOUR LAST DECAF PROJECT



  

Bottom-up local register allocation

for each physical register reg:

    name[reg] = -1      # contents of reg (virtual id)

    next[reg] = INF     # index of next reference

for each virtual register vr:

    loc[vr] = -1    # location of vr (physical id or BP offset)

    spilled[vr] = false      # is vr currently spilled?

for each instruction i:

    for each vr read in i:

        reg = ensure(vr)

        replace vr with reg in i

        if vr is not needed after i then free(vr)

    for each vr written in i:

        reg = allocate(vr)

        replace vr with reg in i

        if vr is not needed after i then free(vr)

ensure(vr):

    if vr is in reg:

        return reg

    else:

        reg = allocate(vr)

        emit code “reg ← vr”

        return reg

allocate(vr):

    if reg is available:

        return reg

    else:

        find reg to spill

        spill(reg)

        return reg



  

Bottom-up local register allocation

add:
  loadAI [bp+8] => r0
  loadAI [bp+12] => r1
  add r0, r1 => r0
  i2i r0 => ret
  return

main:
  loadI 3 => r0
  storeAI r0 => [bp-4]
  loadAI [bp-4] => r0
  loadI 2 => r1
  param r1
  param r0
  call add
  i2i ret => r0
  i2i r0 => ret
  return

add:
  loadAI [bp+8] => r1
  loadAI [bp+12] => r2
  add r1, r2 => r3
  i2i r3 => ret
  return

main:
  loadI 3 => r4
  storeAI r4 => [bp-4]
  loadAI [bp-4] => r5
  loadI 2 => r6
  param r6
  param r5
  call add
  i2i ret => r7
  i2i r7 => ret
  return



  

Bottom-up local register allocation

gcd:
l1:
  loadAI [bp+12] => r0
  loadI 1 => r1
  cmp_GE r0, r1 => r0
  cbr r0 => l2, l3
l2:
  loadAI [bp+12] => r0
  loadI 0 => r1
  store r0 => [r1]
  loadAI [bp+8] => r0
  loadAI [bp+12] => r1
  div r0, r1 => r2
  mult r1, r2 => r1
  sub r0, r1 => r0
  storeAI r0 => [bp+12]
  loadI 0 => r0
  load [r0] => r0
  storeAI r0 => [bp+8]
  jump l1
l3:
  loadAI [bp+8] => r0
  i2i r0 => ret
  return

gcd:
l1:
  loadAI [bp+12] => r1
  loadI 1 => r2
  cmp_GE r1, r2 => r3
  cbr r3 => l2, l3
l2:
  loadAI [bp+12] => r4
  loadI 0 => r5
  store r4 => [r5]
  loadAI [bp+8] => r6
  loadAI [bp+12] => r7
  div r6, r7 => r8
  mult r7, r8 => r9
  sub r6, r9 => r10
  storeAI r10 => [bp+12]
  loadI 0 => r11
  load [r11] => r12
  storeAI r12 => [bp+8]
  jump l1
l3:
  loadAI [bp+8] => r13
  i2i r13 => ret
  return



  

Local vs. global allocation

● Local allocation handles each basic block separately
– Will miss inter-block dependencies

● Global allocation handles all basic blocks in a procedure
– Does NOT consider inter-procedural dependencies
– This is why calling conventions are important

● I.e., caller-save vs. callee-save and return value

● Decaf project
– Because we used SSA in P5 and always load/store to 

memory, no virtual registers will be live at the entrance or exit 
of any block (so no inter-block dependencies)

– Thus, we can use local register allocation in P6



  

Global Allocation

● Determine live range for each virtual register
– Use results from liveness analysis

● Build interference graph
– Node for each virtual register
– Edges between registers with interfering live ranges

● Attempt to compute graph k-coloring
– k is the number of physical registers
– Top-down and bottom-up differ in coloring order
– If successful, done!
– If not successful, spill some values and try again

● Need a robust way to pick which values to spill
● Alternatively, split live ranges at carefully-chosen points



  

Global Allocation

x = 4
y = 10

x = 6
y = 5 y = 7

z = x + y

w = z + 1
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