

CS 432
Fall 2017

Mike Lam, Professor

Finite Automata Conversions
and Lexing

Finite Automata

● Key result: all of the following have the same expressive
power (i.e., they all describe regular languages):
– Regular expressions (REs)
– Non-deterministic finite automata (NFAs)
– Deterministic finite automata (DFAs)

● Proof by construction
– An algorithm exists to convert any RE to an NFA
– An algorithm exists to convert any NFA to a DFA
– An algorithm exists to convert any DFA to an RE
– For every regular language, there exists a minimal DFA

● Has the fewest number of states of all DFAs equivalent to RE

Finite Automata

● Finite automata transitions:

Regex NFA DFA Lexer

Thompson's
construction

Subset
construction

Lexer
generators

Hopcroft's
algorithm

(minimize)

Kleene's construction

Brzozowski's algorithm
(direct to minimal DFA)

(dashed lines indicate transitions to a minimized DFA)

Finite Automata Conversions

● RE to NFA: Thompson's construction
– Core insight: inductively build up NFA using “templates”
– Core concept: use null transitions to build NFA quickly

● NFA to DFA: Subset construction
– Core insight: DFA nodes represent subsets of NFA nodes
– Core concept: use null closure to calculate subsets

● DFA minimization: Hopcroft’s algorithm
– Core insight: create partitions, then keep splitting

● DFA to RE: Kleene's construction
– Core insight: repeatedly eliminate states by combining regexes

Thompson's Construction

● Basic idea: create NFA inductively, bottom-up
– Base case:

● Start with individual alphabet symbols (see below)

– Inductive case:
● Combine by adding new states and null/epsilon transitions
● Templates for the three basic operations

– Invariant:
● The NFA always has exactly one start state and one accepting state

a

Thompson's: Concatenation

A B

Thompson's: Concatenation

AB

Thompson's: Union

A

B

Thompson's: Union

A|B

Thompson's: Closure

A

Thompson's: Closure

ε

A*

Subset construction

● Basic idea: create DFA incrementally
– Each DFA state represents a subset of NFA states
– Use null closure operation to “collapse” null/epsilon transitions
– Null closure: all states reachable via epsilon transitions

● i.e., where can we go “for free?”

– Simulates running all possible paths through the NFA

Null closure of A = { A }
Null closure of B = { B, D }
Null closure of C =
Null closure of D =

Subset construction

● Basic idea: create DFA incrementally
– Each DFA state represents a subset of NFA states
– Use null closure operation to “collapse” null/epsilon transitions
– Null closure: all states reachable via epsilon transitions

● i.e., where can we go “for free?”

– Simulates running all possible paths through the NFA

Null closure of A = { A }
Null closure of B = { B, D }
Null closure of C = { C, D }
Null closure of D = { D }

Subset construction

● Basic idea: create DFA incrementally
– Each DFA state represents a subset of NFA states
– Use null closure operation to “collapse” null/epsilon transitions
– Null closure: all states reachable via epsilon transitions

● i.e., where can we go “for free?”

– Simulates running all possible paths through the NFA

Null closure of A = { A }
Null closure of B = { B, D }
Null closure of C = { C, D }
Null closure of D = { D }

Subset Example

Subset Example

Subset Example

{A}

{B,D}a

b
{C,D}

Hopcroft’s DFA Minimization

{A}

{B,D}a

b
{C,D}

● Split into two partitions (final & non-final)
● Keep splitting a partition while there are states with differing behaviors

– Two states transition to differing partitions on the same symbol
– Or one state transitions on a symbol and another doesn’t

● When done, each partition becomes a single state

Same behavior; collapse!

{A}

{B,C,D}a,b

Hopcroft’s DFA Minimization

{A}

{B,D}a

b
{C,D}

Differing behavior
on ‘a’; split!

a

{A}

{B,D}a

b
{C,D}

a

● Split into two partitions (final & non-final)
● Keep splitting a partition while there are states with differing behaviors

– Two states transition to differing partitions on the same symbol
– Or one state transitions on a symbol and another doesn’t

● When done, each partition becomes a single state

Kleene's Construction

● Replace edge labels with REs
– "a" → "a" and "a,b" → "a|b"

● Eliminate states by combining REs
– See pattern below; apply pairwise around each state to be eliminated
– Repeat until only one or two states remain

● Build final RE
– One state with "A" self-loop → "A*"
– Two states: see pattern below

A C

B

D

AB*C|D

Eliminating
states:

Combining final
two states:

B

CA

D

A*B(C|DA*B)*

NFA/DFA complexity

● What are the time and space requirements to...
– Build an NFA?
– Run an NFA?
– Build a DFA?
– Run a DFA?

NFA/DFA complexity

● Thompson's construction
– At most two new states and four transitions per regex character
– Thus, a linear space increase with respect to the # of regex characters
– Constant # of operations per increase means linear time as well

● NFA execution
– Proportional to both NFA size and input string size
– Must track multiple simultaneous “current” states

● Subset construction
– Potential exponential state space explosion
– A n-state NFA could require up to 2n DFA states
– However, this rarely happens in practice

● DFAs execution
– Proportional to input string size only (only track a single “current” state)

NFA/DFA complexity

● NFAs build quicker (linear) but run slower
– Better if you will only run the FA a few times
– Or if you need features that are difficult to implement with DFAs

● DFAs build slower but run faster (linear)
– Better if you will run the FA many times

NFA DFA

Build time O(m) O(2m)

Run time O(m×n) O(n)

m = length of regular expression
n = length of input string

Lexers

● Auto-generated
– Table-driven: generic scanner, auto-generated tables
– Direct-coded: hard-code transitions using jumps
– Common tools: lex/flex and similar

● Hand-coded
– Better I/O performance (i.e., buffering)
– More efficient interfacing w/ other phases

Handling Keywords

● Issue: keywords are valid identifiers
● Option 1: Embed into NFA/DFA

– Separate regex for keywords
– Easier/faster for generated scanners

● Option 2: Use lookup table
– Scan as identifier then check for a keyword
– Easier for hand-coded scanners
– (Thus, this is probably easier for P2)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

