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Finite Automata

● Key result: all of the following have the same expressive 
power (i.e., they all describe regular languages):
– Regular expressions (REs)
– Non-deterministic finite automata (NFAs)
– Deterministic finite automata (DFAs)

● Proof by construction
– An algorithm exists to convert any RE to an NFA
– An algorithm exists to convert any NFA to a DFA
– An algorithm exists to convert any DFA to an RE
– For every regular language, there exists a minimal DFA

● Has the fewest number of states of all DFAs equivalent to RE



  

Finite Automata

● Finite automata transitions:

Regex NFA DFA Lexer

Thompson's
construction

Subset
construction

Lexer
generators

Hopcroft's
algorithm

(minimize)

Kleene's construction

Brzozowski's algorithm
(direct to minimal DFA)

(dashed lines indicate transitions to a minimized DFA)



  

Finite Automata Conversions

● RE to NFA: Thompson's construction
– Core insight: inductively build up NFA using “templates”
– Core concept: use null transitions to build NFA quickly

● NFA to DFA: Subset construction
– Core insight: DFA nodes represent subsets of NFA nodes
– Core concept: use null closure to calculate subsets

● DFA minimization: Hopcroft’s algorithm
– Core insight: create partitions, then keep splitting

● DFA to RE: Kleene's construction
– Core insight: repeatedly eliminate states by combining regexes



  

Thompson's Construction

● Basic idea: create NFA inductively, bottom-up
– Base case:

● Start with individual alphabet symbols (see below)

– Inductive case:
● Combine by adding new states and null/epsilon transitions
● Templates for the three basic operations

– Invariant:
● The NFA always has exactly one start state and one accepting state

a



  

Thompson's: Concatenation

A B



  

Thompson's: Concatenation

AB



  

Thompson's: Union

A

B



  

Thompson's: Union

A|B



  

Thompson's: Closure

A



  

Thompson's: Closure

ε

A*



  

Subset construction

● Basic idea: create DFA incrementally
– Each DFA state represents a subset of NFA states
– Use null closure operation to “collapse” null/epsilon transitions
– Null closure: all states reachable via epsilon transitions

● i.e., where can we go “for free?”

– Simulates running all possible paths through the NFA

Null closure of A = { A }
Null closure of B = { B, D }
Null closure of C = 
Null closure of D = 
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Subset Example



  

Subset Example



  

Subset Example

{A}

{B,D}a

b
{C,D}



  

Hopcroft’s DFA Minimization

{A}

{B,D}a

b
{C,D}

● Split into two partitions (final & non-final)
● Keep splitting a partition while there are states with differing behaviors

– Two states transition to differing partitions on the same symbol
– Or one state transitions on a symbol and another doesn’t

● When done, each partition becomes a single state

Same behavior; collapse!

{A}

{B,C,D}a,b



  

Hopcroft’s DFA Minimization

{A}

{B,D}a

b
{C,D}

Differing behavior 
on ‘a’; split!

a

{A}

{B,D}a

b
{C,D}

a

● Split into two partitions (final & non-final)
● Keep splitting a partition while there are states with differing behaviors

– Two states transition to differing partitions on the same symbol
– Or one state transitions on a symbol and another doesn’t

● When done, each partition becomes a single state



  

Kleene's Construction

● Replace edge labels with REs
– "a" → "a" and "a,b" → "a|b"

● Eliminate states by combining REs
– See pattern below; apply pairwise around each state to be eliminated
– Repeat until only one or two states remain

● Build final RE
– One state with "A" self-loop → "A*"
– Two states: see pattern below

A C

B

D

AB*C|D

Eliminating 
states:

Combining final 
two states:

B

CA

D

A*B(C|DA*B)*



  

NFA/DFA complexity

● What are the time and space requirements to...
– Build an NFA?
– Run an NFA?
– Build a DFA?
– Run a DFA?



  

NFA/DFA complexity

● Thompson's construction
– At most two new states and four transitions per regex character
– Thus, a linear space increase with respect to the # of regex characters
– Constant # of operations per increase means linear time as well

● NFA execution
– Proportional to both NFA size and input string size
– Must track multiple simultaneous “current” states

● Subset construction
– Potential exponential state space explosion
– A n-state NFA could require up to 2n DFA states
– However, this rarely happens in practice

● DFAs execution
– Proportional to input string size only (only track a single “current” state)



  

NFA/DFA complexity

● NFAs build quicker (linear) but run slower
– Better if you will only run the FA a few times
– Or if you need features that are difficult to implement with DFAs

● DFAs build slower but run faster (linear)
– Better if you will run the FA many times

NFA DFA

Build time O(m) O(2m)

Run time O(m×n) O(n)

m = length of regular expression
n = length of input string



  

Lexers

● Auto-generated
– Table-driven: generic scanner, auto-generated tables
– Direct-coded: hard-code transitions using jumps
– Common tools: lex/flex and similar

● Hand-coded
– Better I/O performance (i.e., buffering)
– More efficient interfacing w/ other phases



  

Handling Keywords

● Issue: keywords are valid identifiers
● Option 1: Embed into NFA/DFA

– Separate regex for keywords
– Easier/faster for generated scanners

● Option 2: Use lookup table
– Scan as identifier then check for a keyword
– Easier for hand-coded scanners
– (Thus, this is probably easier for P2)
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