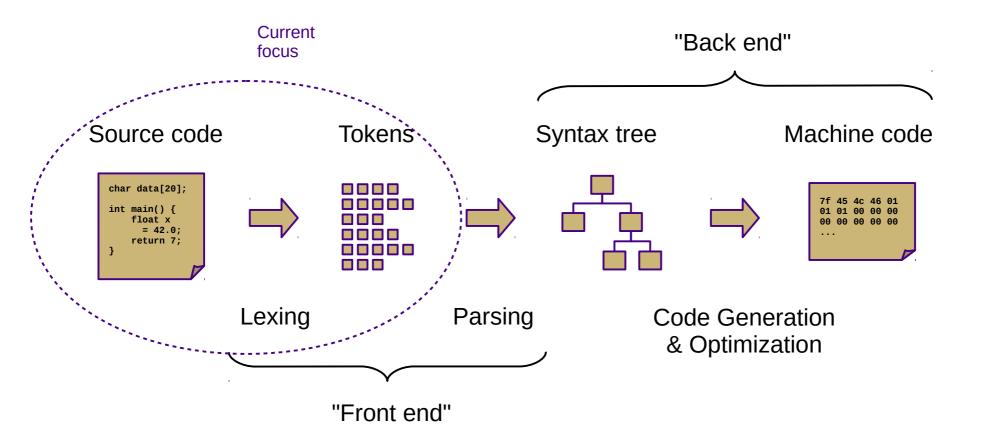

CS 432 Fall 2017


Mike Lam, Professor

a|(bc)*

Regular Expressions and Finite Automata

Compilation

- Lexemes or tokens: the smallest building blocks of a language's syntax
- Lexing or scanning: the process of separating a character stream into tokens

total = sum(vals) / n		char *str = "hi";	
total = sum (vals) /	identifier equals_op identifier left_paren identifier right_paren divide_op	char * str = "hi" ;	keyword star_op identifier equals_op str_literal semicolon
n	identifier		

Discussion question

• What is a language?

Language

• A language is "a (potentially infinite) set of strings over a finite alphabet"

Discussion question

• How do we describe languages?

хуу	ху		
ху	хуу		xyy xyyz xyyzz xyyzzz
xyyzzz	xyz		
xyz	xyyz		
xyzz	xyzz		
xyyzz	xyyzz	(etc.)	
xyyz	xyzzz		
XYZZZ	xyyzzz		
(etc.)	(etc.)		

Language description

- Ways to describe languages
 - Ad-hoc prose
 - "A single 'x' followed by one or two 'y's followed by any number of 'z's"
 - Formal regular expressions (current focus)
 - x(y|yy)z*
 - Formal grammars (in two weeks)
 - $A \rightarrow X B C$
 - B → y | y y
 - $C \rightarrow Z C \mid \epsilon$

Languages

Chomsky Hierarchy of Languages

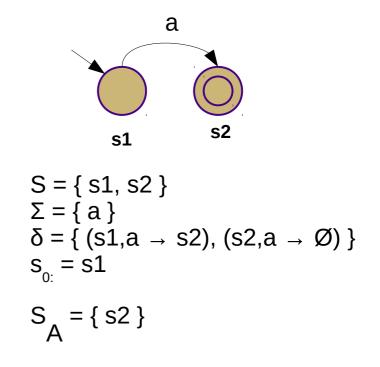
- Alphabet:
 - $\Sigma = \{ \text{ set of all characters } \}$
- Language:
 - L = { set of sequences of characters from Σ }

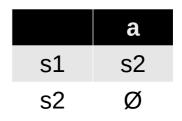
Regular expressions

- Regular expressions describe regular languages
 - Can also be thought of as generalized search patterns
- Three basic recursive operations:
 - Alternation: a|b
 - Concatenation: ab
 - ("Kleene") Closure: a*
- Extended constructs:
 - Character sets: [0-9] == 0|1|2|3|4|5|6|7|8|9
 - Grouping: (a|b)c == ac|bc
 - Positive closure: a+ == aa*

Discussion question

- How would you implement regular expressions?
 - Given a regular expression and a string, how would you tell whether the string belongs to the language described by the regular expression?


- Implemented using state machines (finite state automata)
 - Set of states with a single start state
 - Transitions between states on inputs (w/ implicit dead states)
 - Some states are final or accepting
- Deterministic vs. non-deterministic
 - Non-deterministic: multiple possible states for given sentence
 - One edge from each state per character (deterministic)
 - Multiple edges from each state per character (non-deterministic)
 - Empty or ε-transitions (non-deterministic)


Deterministic finite automata

- Formal definition
 - S: set of states
 - Σ: alphabet (set of characters)
 - δ: transition function: (S, Σ) \rightarrow S
 - s_{0:} start state
 - S_A : accepting/final states
- Acceptance algorithm

 $s := s_0$ for each input c: $s := \delta(s,c)$ return $s \in S_A$

Alternative δ representation:

Non-deterministic finite automata

- Formal definition
 - DFA w/ multiple paths and ϵ -transitions
 - − δ: (S, (Σ ∪ {ε})) -> [S]
 - ϵ -closure: all states reachable from s via ϵ -transitions
 - Formally: {s} \cup { t \in S | (s, $\epsilon \rightarrow t$) $\in \delta$ } (extended to sets by union)
- Acceptance algorithm

```
T := \varepsilon\text{-}closure(s_0)
```

for each input c:

```
N := \{\}
for each s in T:

N := N \cup \varepsilon \text{-closure}(\delta(s,c))
T := N
return |T \cap S_A| > 0
```

Summary

DFAs

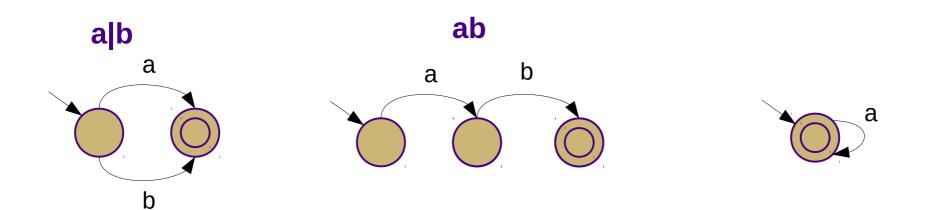
- S: set of states
- Σ: alphabet (set of characters)
- δ : transition function: (S, Σ) \rightarrow S
- s_{0:} start state
- S_A: accepting/final states

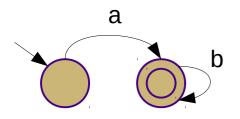
accept():

 $s := s_0$

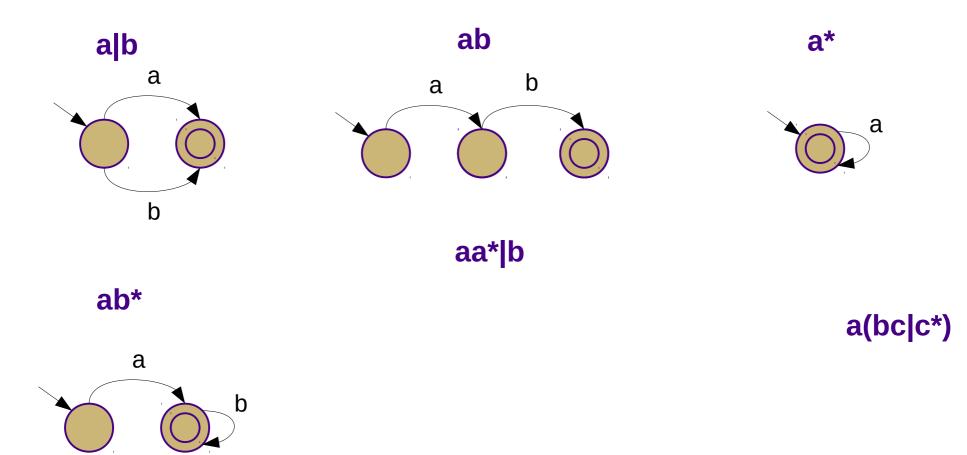
for each input c:

 $s := \delta(s,c)$ return $s \in S_A$

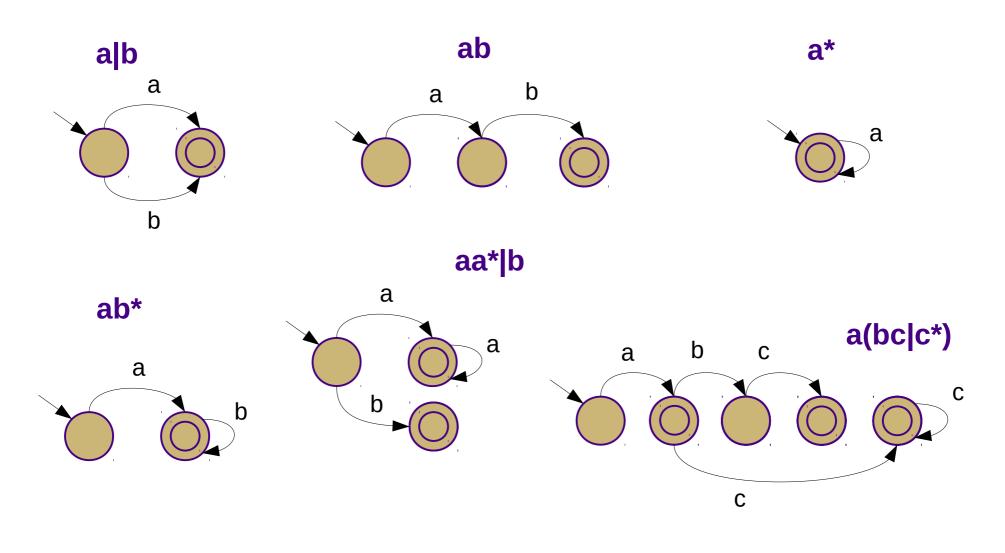

NFAs


- δ may contain ϵ -transitions
- δ may contain transitions to multiple different states on the same symbol

accept():


 $T := \varepsilon \text{-}closure(s_0)$ for each input c: $N := \{\}$ for each s in T: $N := N \cup \varepsilon \text{-}closure(\delta(s,c))$ T := Nreturn $|T \cap S_A| > 0$

• Examples:



• Examples:

• Examples:

Equivalence

- A regular expression and a finite automaton are equivalent if they recognize the same language
 - Same applies between different REs and between different FAs
- Regular expressions, NFAs, and DFAs all describe the same set of languages
 - "Regular languages" from Chomsky hierarchy
- Next week, we will learn how to convert between them

Application

- PA2: Use Java regular expressions to tokenize Decaf files
 - Process the input one line at a time
 - Generally: one regex per token type
 - Each regex begins with "^" (only match from beginning)
 - Prioritize regexes and try each of them in turn
 - When you find a match, extract the matching text
 - Repeat until no match is found or input is consumed
 - Less efficient than an auto-generated lexer
 - However, it is simpler to understand
 - (Our approach to PA3 will be similar)

Activity

Construct state machines for the following regular expressions:

x*yz*1(1|0)*1(10)*(a|b|c)(ab|bc) $(dd^*.d^*)|(d^*.dd^*)$ \leftarrow ϵ -transitions may make this one slightly easier