
Decaf Language Reference

Mike Lam, James Madison University

Fall 2016

1 Introduction

Decaf is an imperative language similar to Java or C, but is greatly simplified compared to those languages.
It will allow us to implement a compiler for the entire language in a single semester while still exploring all
of the basic facets of a modern compiler.

This project is originally based on a project from course 6.035 at the Massachusetts Institute of Technology.
However, significant changes have been made to the language. This document is the only authoritative
reference to the version of Decaf used in CS 432 and CS 630 at James Madison University.

Here is an example program in Decaf:

// add.decaf - simple addition example

def int add(int x, int y)

{

return x + y; // add the two parameters

}

def int main()

{

int a;

a = 3;

return add(a, 2);

}

Here is the output from running the reference compiler on the above program:

$ java -jar decaf-1.0.jar -i add.decaf

5

Here are some important points of difference between Decaf and more general-purpose procedural languages
like C and Java:

• Decaf is not object-oriented.

• Function declarations must begin with the def keyword.

• Variable declarations may not include initializations.

• Many syntactic sugar operators (such as += or ++) are not included.

• Boolean expression evaluation is not guaranteed to be short-circuited.

1

2 Lexical Considerations

There are six token classes in Decaf:

Name Description
ID identifiers
KEY keywords
DEC decimal literals
HEX hexadecimal literals
STR string literals
SYM symbols

Identifiers and keywords must begin with an alphabetic character and may contain alphanumeric characters
and the underscore (‘ ’). A keyword can be thought of a special identifier that is “reserved” and cannot be
used for actual variables or functions. Both keywords and identifiers are case-sensitive, and all keywords are
lowercase. For example, if is a keyword, but IF is a variable name; foo and Foo are two different names
referring to two distinct variables.

The following are all of the supported keywords in Decaf:

def if else while return break continue int bool void true false

In addition, all of the following words are reserved; they are not currently keywords but may be used in
future versions of the language and thus should not be used as identifier names:

for callout class interface extends implements new this string float double null

Keywords and identifiers must be separated by white space, or a token that is neither a keyword nor an
identifier. For example, iftrue is a single identifier, not two distinct keywords. If a sequence begins with an
alphabetic character, then it and the longest sequence of alphanumeric characters and underscores following
it forms a token (either a keyword or an identifier).

Symbols can be split into three types: 1) grouping operators: parentheses, brackets, curly braces, assignment
(equals), commas, and semicolons, 2) binary operators (BINOP) and 3) unary operators (UNOP). There are a
variety of binary and unary operators in Decaf, including both arithmetic operators (e.g., plus and minus)
and boolean operators (e.g., less-than and boolean OR). The following is a list of all supported symbols in
Decaf:

({ [] }) , ; = + - * / % < > <= >= == != && || !

Integer literals are unsigned and may be written in either decimal or hexadecimal form. The latter will
always begin with the sequence 0x. Neither decimal nor hexadecimal literals may be zero-padded at the
beginning.

String literals must be enclosed in quote marks and may contain four kinds of escaped characters: newlines
(‘\n’), tabs (‘\t’), quotes (‘\"’), and backslashes (‘\\’). ASCII is the only supported character set.

Comments are started by “//” and are terminated by the end of the line. “Whitespace” may appear between
any lexical tokens, and consists of one or more spaces, tabs, newlines, or carriage returns. Comments and
whitespace have no effect on a Decaf program’s execution, and both should be discarded during the lexical
analysis phase of compilation.

Decaf programs should be stored in files with the “.decaf” extension, and a single Decaf program may not
span multiple files.

2

3 Syntax

The following is the Decaf grammar (in EBNF form):

Program →
(
Var | Func

)
*

Var → Type ID
(

‘[’ DEC ‘]’
)
? ‘;’

Func → def Type ID ‘(’ ParamList? ‘)’ Block
ParamList → Type ID

(
‘,’ Type ID

)
*

Block → ‘{’ Var* Stmt* ‘}’

Stmt → Loc ‘=’ Expr ‘;’
Stmt → FuncCall ‘;’
Stmt → if ‘(’ Expr ‘)’ Block

(
else Block

)
?

Stmt → while ‘(’ Expr ‘)’ Block
Stmt → return Expr? ‘;’
Stmt → break ‘;’
Stmt → continue ‘;’

Expr → Expr BINOP Expr
Expr → UNOP Expr
Expr → ‘(’ Expr ‘)’
Expr → Loc
Expr → FuncCall
Expr → Lit

Type → int | bool | void
Loc → ID

(
‘[’ Expr ‘]’

)
?

FuncCall → ID ‘(’ ArgList? ‘)’
ArgList → Expr

(
‘,’ Expr

)
*

Lit → DEC | HEX | STR | true | false

The following is a key to some of the meta-notation used above:

Example Description
Foo non-terminal
foo keyword
FOO token class (see Section 2)
‘a’ symbol consisting of character ‘a’
x? zero or one occurences of x (i.e., optional)
x* zero or more occurences of x()

used for grouping
| designates alternatives

3

Although this is not reflected in the reference grammar on the previous page, all binary operations in Decaf
are left-associative. In addition, there are seven levels of operator precedence, shown in the table below from
highest to lowest:

Operators Comments
- unary negation
! unary boolean negation (NOT)

* / % integer multiplication, division, and remainder
+ - integer addition and subtraction

< <= >= > boolean ordinal relation
== != boolean equality
&& boolean conjunction (AND)
|| boolean disjunction (OR)

As written above, this grammar is neither LL(1) nor LR(1); however, it can be transformed (using standard
CFG transformations) into a grammar that is both. The process of performing these transformations is a
useful exercise for the reader and a vital component of building a parser for the language.

Note that variables may be declared void; such declarations are allowed by the grammar but will be flagged
during the static analysis phase.

Because the provided grammar is not yet suitable for directly building a parser, there are many possible
correct LL(1) and LR(1) grammars, and thus many correct parse trees for any given Decaf program. Thus, it
is important to have a clearly-defined abstract syntax tree format that is independent of any specific parsing
implementation. Here is a list of standardized Decaf AST objects (arranged in a tree format to indicate
inheritance relationships):

Node

Program (contains Variables and Functions)

Variable

Function (contains a Block)

Block (contains Variables and Statements)

Statement

Assignment (contains a Location and an Expression)

VoidFunctionCall (contains Expressions)

Conditional (contains an Expression and either one or two Blocks)

WhileLoop (contains an Expression and a Block)

Return (contains an optional Expression)

Break

Continue

Expression

Location

FunctionCall (contains Expressions)

Literal

BinaryExpr (contains two Expressions)

UnaryExpr (contains one Expression)

4

4 Semantics

A Decaf program consists of a series of variable and function declarations.

4.1 Variables

There are two basic types in Decaf: 32-bit signed integers (int) and booleans (bool). Variables may be
declared outside a function; such variables are considered “global” variables and are accessible from all
functions. Variables declared inside a function or block are only visible inside the corresponding lexical
scope (see Section 4.3 for details).

Decaf supports simple, fixed-length, one-dimensional, static arrays. Arrays must be declared global and
their size is specified at their declaration time. Arrays are indexed from 0 to N − 1, where N is the size of
the array (which must be greater than zero). The usual bracket notation is used to index arrays. Because
arrays have a compile-time fixed size and cannot be declared as parameters (or local variables), there is no
facility for querying the length of an array variable in Decaf. Arrays may be of either basic type (integers or
booleans).

Assignment is only permitted for scalar values. Decaf uses value-copy semantics, and the assignment “<loc>
= <expr>” copies the value resulting from the evaluation of <expr> into <loc>. If a variable is referenced
before it is assigned, the result is undefined.

4.2 Functions

In Decaf, functions must be declared using the “def” keyword. Functions must either be “void” or have
a single return value; they may take an unlimited number of parameters. Each parameter must have a
formally-declared type. Arrays may NOT be passed as function parameters.

Every Decaf program must contain a function called main that takes no parameters and returns an int.
Exection of the program begins at the main function. Functions may be called before their definition in the
source code.

Decaf does not provide support for variadic parameters (e.g., “printf” in C).

The Decaf language does allow recursive functions, but the built-in interpreter currently does not support
them.

4.3 Scope

Decaf uses very simple static scoping rules. There are at least two valid scopes at any point in a Decaf
program: the global scope and the function scope. The global scope consists of names of variables and
functions introduced at the top level of the source code. The function scope consists of names of variables
and formal parameters introduced in a function declaration. Additional local scopes exist within each block
in the code; these can come after if or while statements or anywhere there is a new block.

An identifier introduced in a function scope can shadow an identifier from the global scope. In this case, the
identifier may only be used as a variable until the variable leaves scope. Similarly, identifiers introduced in
local scopes shadow identifiers in less deeply nested scopes, the function scope, and the global scope.

No identifier may be defined more than once in the same scope. Thus, variable and function names must all
be distinct in the global scope, and local variable names and formal parameters names must be distinct in
each local scope.

5

4.4 Function Calls

Function invocation involves (1) passing argument values from the caller to the callee, (2) executing the
body of the callee, and (3) returning to the caller, possibly with a result.

Argument passing is defined in terms of assignment: the formal arguments of a function are considered to
be like local variables of the function and are initialized, by assignment, to the values resulting from the
evaluation of the argument expressions. The arguments are evaluated from left to right.

The body of the callee is then executed by executing the statements of its function body in sequence.

A function that is declared with a void return type can only be called as a statement, i.e., it cannot be used
in an expression. Such a function returns control to the caller when return is called (no result expression is
allowed) or when the textual end of the callee is reached.

A function that returns a result may be called as part of an expression, in which case the result of the call is
the result of evaluating the expression in the return statement when this statement is reached. It is illegal
for control to reach the textual end of a function that returns a result.

A function that returns a result may also be called as a statement. In this case, the result is ignored.

4.5 Control Structures

The if statement has the same semantics as in standard procedural programming languages. First, the
conditional expression is evaluated. If the result is true, the “true” block is executed. Otherwise, the “else”
block is executed, if it exists. Since Decaf requires that the “true” and “else” blocks be enclosed in braces,
there is no ambiguity in matching an “else” block with its corresponding if statement.

The while statement also has the same semantics as in standard procedural languages. First, the guard
expression is evaluated. If the result is true, the loop body is executed. After the loop body executes one
iteration, the guard expression is re-evaluated. If the guard expression evaluates to false at any point at
which it is evaluated, the loop terminates and execution resumes at the statement following the loop.

Decaf provides support for the standard continue and break statements, which immediately transfer control
to the beginning or end of the loop (respectively). In the case of the former, the guard expression should be
re-checked before the loop body is executed again.

4.6 Expressions

Expressions follow the normal rules for evaluation. In the absence of other constraints, operators with the
same precedence are evaluated from left to right. Parentheses may be used to override normal precedence.

A location expression evaluates to the value contained by the location. The semantics of this differ depending
on whether the location is an l-value or an r-value. Array operations are discussed in Section 4.1.

Method invocation expressions are discussed in Section 4.4.

Integer literals evaluate to their integer value. Boolean literals are evaluated to the integer values 1 (true)
and 0 (false). String literals do not evaluate to anything; since variables cannot store strings, their only valid
use is as an argument to predefined functions (e.g., the print str function; see Section 4.7).

The arithmetic operators (arith op and unary minus) have their usual precedence and meaning, as do the
relational operators (rel op). % computes the remainder of dividing its operands.

Relational operators are used to compare integer expressions and may not be used on boolean variables.
The equality operators (== and != are valid for both int and boolean types, and can be used to compare
any two expressions having the same type. The result of a relational operator or equality operator has type
boolean. Boolean expression evaluation is not guaranteed to be short-circuited.

6

4.7 Input and Output

Decaf supports only very primitive I/O. There is currently no support for input; all input values must be
hard-coded in the source. Output is supported using the following predefined library functions:

void print_str(string value)

void print_int(int value)

void print_bool(bool value)

The first two operate as expected. The last one (print bool) prints the internal representation of the
boolean (i.e., 1 for true and 0 for false). None of these functions add a newline at the end of the input; if
newlines are desired they must be printed explicitly using the print str function.

These functions are not actually implemented in Decaf (they are provided by the Decaf standard library)
and thus must be manually added to the global symbol table during static analysis to ensure that calls to
them are properly type-checked. Here are some examples of their use:

def int main()

{

print_str("Hello!"); // result: "Hello!"

print_int(2+3); // result: "5"

print_bool(5 < 9); // result: "1"

print_bool(5 < 2); // result: "0"

return 0;

}

7

5 Type Checking

Here is an incomplete list of basic type inference and type checking rules for Decaf. Each rule consists
of a series of antecedents or premises (above the line) and a conclusion (below the line). In these rules,
Γ ` e : t means that “e has type t in environment Γ”. If t is omitted, the statement simply means that “e is
well-typed” (i.e., it has no type errors). Here, Γ (called the typing context or type environment) refers to the
local symbol table (with the ability to look up symbols recursively through its parent table). The absence
of Γ indicates that no symbol table is necessary to type-check e.

Expressions:

TDec ` DEC : int
THex ` HEX : int

TStr ` STR : str

TTrue ` true : bool
TFalse ` false : bool

TSubExpr
Γ ` e : t

Γ ` ‘(‘ e ‘)‘ : t

TLoc
ID : t ∈ Γ
Γ ` ID : t

TArrLoc
ID : t[] ∈ Γ Γ ` e : int

Γ ` ID ‘[‘ e ‘]‘ : t

TFuncCall
ID : (t1, t2, ..., tn)→ tr ∈ Γ Γ ` e1 : t1 Γ ` e2 : t2 ... Γ ` en : tn

Γ ` ID ‘(‘ e1, e2, ..., en ‘)‘ : tr

TNot
Γ ` e : bool

Γ ` ‘!‘ e : bool
TNeg

Γ ` e : int
Γ ` ‘-‘ e : int

TAdd
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ‘+‘ e2 : int
(similar for TSub (-), TMul (*), TDiv (/) and TMod (%))

TLe
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ‘<‘ e2 : bool
(similar for TLeq (<=), TGe (>), and TGeq (>=))

TEq
Γ ` e1 : t Γ ` e2 : t

Γ ` e1 ‘==‘ e2 : bool
(similar for TNeq (!=))

TAnd
Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 ‘&&‘ e2 : bool
(similar for TOr (||))

Statements:

TIf
Γ ` e : bool Γ ` b

Γ ` if ‘(‘ e ‘)‘ b
TIfElse

Γ ` e : bool Γ ` b1 Γ ` b2
Γ ` if ‘(‘ e ‘)‘ b1 else b2

TWhile
Γ ` e : bool Γ ` b
Γ ` while ‘(‘ e ‘)‘ b

TAssign
Γ ` ID : t ∈ Γ Γ ` e : t

Γ ` ID ‘=‘ e ‘;‘
TArrAssign

ID : t[] ∈ Γ Γ ` ei : int Γ ` ev : t

Γ ` ID ‘[‘ ei ‘]‘ ‘=‘ ev ‘;‘

TVoidFuncCall
ID : (t1, t2, ..., tn)→ tr ∈ Γ Γ ` e1 : t1 Γ ` e2 : t2 ... Γ ` en : tn

Γ ` ID ‘(‘ e1, e2, ..., en ‘)‘

8

