Attribute grammars

Syntax-directed translation _ _ _
“__Inherited vs. synthesized attributes

Type systems

Type checking: static vs. dynamic

§ Type inference

Type checking

Implicit vs. explicit

Type conversion

“_ Narrowing vs. widening

Polymorphism and type variables

Address spaces

\ Local variables

Manual deallocation

Stack frames
Stack vs. base pointer
Stack management
) Parameter passing
Code Generation Memory Y

Heap management f Reference counting
\ Mark-and-sweep

Stack-machine code

Concatenation

Alternation

Kleene closure
Extensions 7
Formal definitions

DFA vs. NFA

Null closure

Regular expressions

Three-address code

Linear IRs

{ Static Single-Assignment form

= Conversion from parse tree to linear IR

Instruction selection

Local top-down
Machine code
“_ Register aIIocation[Local bottom-up

Regex -> NFA conversion (Thompson's) :

Finite automata

NFA -> DFA conversion (Subset Construction)E \ Global w/ graph coloring

DFA minimization Basic blocks
Efficiency analysis Control flow graph
Scanner implementation =] Extracting CFGs
Regular vs. context-free languages Forwards vs. backwards
Backus-Naur form Transfer functions
Derivations and parse trees £ Simple fixed-point dataflow algorithm
Associativity and precedence Context-free grammars Dataflow analysis Sound vs. complete analysis
Ambiguity Dominators
Eliminating left recursion = Live variables
Left factoring = Parsing o Reaching definitions
Applications

Recursive descent predictive parsing Available expressions

Constructing FIRST and FOLLOW setsE \ Top-down parsing

Constructing LL(1) parseri J
Shift-reduce algorithm

Constant propagation

Partial-redundancy elimination

= Local value numbering

Tree-height balancing
o Local optimization
Optimization Peephole optimization
\ X E Local list scheduling

Constant propagation

Constructing LR(0) item setsL \ Bottom-up parsing
Creation of SLR parsing tables = f

Dead code elimination

/ Lazy code motion

[Strength reduction

Regional/global optimizations _ .
__ Tail recursion elimination

K Superlocal value numbering

& Global list scheduling

Loop unrolling

Function inlining

Procedure placement

Constant propagation
Y Dead code elimination

Interprocedural optimization

\ Link time optimization

Profile-based optimization

