

CS 432
Fall 2016

Mike Lam, Professor

Data-Flow Analysis

Compilers

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"

Current
focus

Optimization is Hard

● Problem: it's hard to reason about all possible executions

– Preconditions and inputs may differ

– Optimizations should be correct and efficient in all cases

– Consider this code:
 int *p; cin >> p; *p = 42;

● Optimization tradeoff: investment vs. payoff

– "Better than naïve" is fairly easy

– "Optimal" is impossible

– Real world: somewhere in between
● Better speedups with more static analysis
● Usually worth the added compile time

Control-Flow Graphs

● Linear IRs (e.g., ILOC) don't easily expose control flow

– This makes analysis and optimization difficult

● Basic blocks

– "Maximal-length sequence of branch-free code"

– "Atomic" code sequences

– Instructions that always execute together

● Control-flow graph (CFG)

– Nodes/vertices for basic blocks

– Edges for control transfer
● Branches (explicit) or fallthrough (implicit)
● p is a predecessor of q if there is a path from p to q
● q is a successor of p if there is a path from p to q

Control-Flow Graphs

● Conversion: linear IR to CFG

– Find leaders (initial instruction of a basic block) and build blocks
● Every call or jump target is a leader

– Add edges between blocks based on branches and fallthrough

– Complicated by jump-to-address instructions

foo:
 loadAI [bp-4] => r1
 cbr r1 => l1, l2
l1:
 loadI 5 => r2
 jump l3
l2:
 loadI 10 => r2
l3:
 storeAI r2 => [bp-4]

loadAI [bp-4] => r1
cbr r1 => l1, l2

loadI 5 => r2 loadI 10 => r2

storeAI r2 => [bp-4]

Static CFG Analysis

● Single block analysis is easy

● Trees are also relatively easy

– No path merges or loops

● General CFGs are harder

– Which branch of a conditional will execute?

– How many times will a loop execute?

● How do we handle this?

– One method: iterative data-flow analysis

– Simulate all possible paths through a region of code

Data-Flow Analysis

● Define properties of interest for basic blocks

– Usually sets of blocks, variables, definitions, etc.

● Define a formula for how those properties change within a block

– F(B) is based on F(A) where A is a predecessor or successor of B

● Gather initial information to help calculate property changes

– Helper functions g(B) that can be used in F(B)

● Run an iterative update algorithm to propagate changes

– Keep running until the properties converge for all basic blocks

– More efficient w/ reverse postorder traversal: visit predecessors first

● Key concept: finite descending chain property

– Properties must be monotonically increasing or decreasing

– Otherwise, termination is not guaranteed

Data-Flow Analysis

● This kind of algorithm is called a fixed-point algorithm

– It runs until it converges to a “fixed point”

● Forward vs. backward data-flow analysis

– Forward: along graph edges (based on predecessors)

– Backward: reverse of forward (based on successors)

● Types of data-flow analysis

– Dominance

– Liveness

– Available expressions

– Reaching definitions

– Anticipable expressions

Dominance

● Block A dominates block B if A lies on every path from
the entry block to B

– Conversely, B postdominates block A if B lies on every
path from A to any exit

Dom(n)={n}∪(m∈preds (n)
∩

Dom(m))

Liveness

● Variable v is live at point p if there is a path from p to a use of v
with no intervening assignment to v

– Useful for finding uninitialized variables (live at function entry)

– Useful for optimization (remove unused assignments)

– Useful for register allocation (keep live vars in registers)

● Initial information: UEVar and VarKill

– UEVar(B): variables used in B before any redefinition in B

– VarKill(B): variables that are defined in B

● Textbook note: X ∩ Y = X - Y

LiveOut (n)=m∈succs(n)
∪

(UEVar (m)∪(LiveOut (m)−VarKill (m)))

Liveness example

LiveOut (n)=m∈succs(n)
∪

(UEVar (m)∪(LiveOut (m)−VarKill (m)))

Alternative definition

● Define LiveIn as well as LiveOut

– Two formulas for each basic block

– Makes things a bit simpler to reason about

LiveIn(n) = UEVar(n) ∪ (LiveOut (n)−VarKill(n))

LiveOut (n)= m∈succs(n)
∪

[LiveIn(m)]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

