Data-Flow Analysis

Source code

=)

Lexing

~
"Front end"

"Back end"

Code Generation
& Optimization

~
——————
......
- -

Current
focus

I Optimization Is Hard

 Problem: it's hard to reason about all possible executions

— Preconditions and inputs may differ
— Optimizations should be correct and efficient in all cases
— Consider this code:
int *p; cin >> p; *p = 42;
e Optimization tradeoff: investment vs. payoff
— "Better than naive" is fairly easy
— "Optimal"” is impossible
— Real world: somewhere in between

e Better speedups with more static analysis
e Usually worth the added compile time

I Control-Flow Graphs

e Linear IRs (e.g., ILOC) don't easily expose control flow
— This makes analysis and optimization difficult
e Basic blocks

— "Maximal-length sequence of branch-free code"
- "Atomic" code sequences
— Instructions that always execute together

e Control-flow graph (CFG)

— Nodes/vertices for basic blocks

— Edges for control transfer
e Branches (explicit) or fallthrough (implicit)
e pis apredecessor of qif there is a path from p to g
e gis asuccessor of pifthereis a path fromptoq

I Control-Flow Graphs

e Conversion: linear IR to CFG

— Find leaders (initial instruction of a basic block) and build blocks
e Every call or jump target is a leader
— Add edges between blocks based on branches and fallthrough

— Complicated by jump-to-address instructions

loadAI [bp-4] => r1
foo: cbr r1 => 11, 12

loadAI [bp-4] => r1

cbr ri1 => 11, 12
11:

loadI 5 => r2

jump 13 > loadI 5 => r2 loadI 10 => r2
12:

loadI 10 => r2
13:

storeAI r2 => [bp-4] storeAl r2 => [bp-4]

I Static CFG Analysis

e Single block analysis is easy
* Trees are also relatively easy

— No path merges or loops
e General CFGs are harder
— Which branch of a conditional will execute?
— How many times will a loop execute?
 How do we handle this?

— One method: iterative data-flow analysis
— Simulate all possible paths through a region of code

I Data-Flow Analysis

Define properties of interest for basic blocks
— Usually sets of blocks, variables, definitions, etc.
Define a formula for how those properties change within a block

- F(B) is based on F(A) where A is a predecessor or successor of B
Gather initial information to help calculate property changes

— Helper functions g(B) that can be used in F(B)
Run an iterative update algorithm to propagate changes

— Keep running until the properties converge for all basic blocks
— More efficient w/ reverse postorder traversal: visit predecessors first

Key concept: finite descending chain property

— Properties must be monotonically increasing or decreasing
— Otherwise, termination is not guaranteed

I Data-Flow Analysis

e This kind of algorithm is called a fixed-point algorithm
— It runs until it converges to a “fixed point”

e Forward vs. backward data-flow analysis
— Forward: along graph edges (based on predecessors)
— Backward: reverse of forward (based on successors)

e Types of data-flow analysis

— Dominance

— Liveness

— Available expressions
— Reaching definitions

— Anticipable expressions

I Dominance

* Block A dominates block B if A lies on every path from
the entry block to B

— Conversely, B postdominates block A if B lies on every
path from A to any exit

B
O\
B> /Bj\
Dom(n)={n}u\me preds(n) Dom(m) Bg Bg
- X
By
ol
B3

I LIveness

e Variable v is live at point p if there is a path from p to a use of v
with no intervening assignment to v

— Useful for finding uninitialized variables (live at function entry)
— Useful for optimization (remove unused assignments)
— Useful for register allocation (keep live vars in registers)

e Initial information: UEVar and VarKill

- UEVar(B): variables used in B before any redefinition in B
— VarKill(B): variables that are defined in B

e Textbook note: X nY=X-Y

U

LiveOut (n)=m&succs(n) (UEVar (m)U(LiveOut (m)— VarKill (m)))

i« 1 By
=% By Bs: return W
g :_"" Bs: a « ... /Bl\
“ss d S
(a < ¢) = B2,Bs (o< d) = Bz B Bs
b« - Bt e e %
i< e . A
3 —= B3 By
y <« a+b /
Z %= C + d Bat, € %= e B3
{ w1 # 1 = : I\)
(i < 100) — By,Bs i

o AP

UEVAR @ ") @ @
VARKILL {i} {a.,c} {b,c,d) Iv.2,.1] @ ({a.d} {d} (b} {c)

(c) Initial Information

U

LiveOut (n)=me&succs(n) (UEVar (m)U(LiveOut (m)— VarKill (m)))

I Alternative definition

e Define Liveln as well as LiveOut

— Two formulas for each basic block
— Makes things a bit simpler to reason about

LiveIn(n) = UEVar(n) U (LiveOut(n)—VarKill(n))

U
LiveOut (n) = m€succs(n) [Liveln(m)]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

