

CS 432
Fall 2015

Mike Lam, Professor

Code Generation

Compilers

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"

Current
focus

Our Project

● Current status: type-checked AST

● Next step: convert to ILOC

– This step is called code generation

– Convert from a tree-based IR to a linear IR
● (or directly to machine code)
● Use a tree traversal to “linearize” the program

● But first, more general code gen topics

Goals

● Code generator outputs

– Stack code (push a, push b, multiply, pop c)

– Three-address code (c = a + b)

– Machine code (movq a, %eax; addq b, %eax; movq %eax, c)

● Code generator requirements

– Must preserve semantics

– Should produce efficient code

– Should run efficiently

Obstacles

● Generating the most optimal code is undecidable

– Unlike front-end transformations
● (e.g., lexing & parsing)

– Must use heuristics and approximation algorithms

– This is why most compilers research since 1960s has
been on the back end

Phases

● Instruction selection

– Map IR to target instructions

– Difficulty is directly related to uniformity and completeness of
target instruction set

● Register allocation/assignment

– Allocation: selecting which variables to store in registers

– Assignment: selecting which register to use for each variable

– General problem is NP-complete

● Instruction scheduling

– Optimize for pipelined architectures w/ caching

– Take advantage of speculative execution

Syntax-Directed Translation

● Similar to attribute grammars (Figure 4.15)

● Associate bits of code with each production

– This code performs the translation or code gen

– Save intermediate results in temporary registers for now

● In our project, we will use a visitor

– Still syntax-based (actually AST-based)

– Not dependent on original grammar

ILOC

● Linear IR based on research compiler from Rice

● See Appendix A (and ILOCInstruction.java)

● I have made some modifications

– Removed most immediate instructions (i.e., subI)

– Removed binary shift instructions

– Removed character-based instructions

– Removed jump tables

– Removed comparison-based conditional jumps

– Added labels and function call mechanisms (call, param, return)

– Added symbol address referencing (loadS)

– Added binary not and arithmetic neg

– Added print and nop instructions

SSA Form

● Static single-assignment

– Naming convention that uses a unique name for each newly-
calculated value

– Values are collapsed at control flow points using Φ-functions
● (not actual executed!)

– Useful for various types of analysis

cmp_LT r1, r2 → r3
cbr r3 → l1, l2

l1:
 loadI 4 → r4
 jmp l3

l2:
 loadI 8 → r5
 jmp l3

l3:
 r6 = Φ(r4, r5)

Assigning Storage Locations

● Memory regions

– Code ("text")

– Static ("data")

– Heap

– Stack

● Registers

– General

– Special

Boolean Encoding

● Integers: 0 for false, 1 for true

● Difference from book

– No comparison-based conditional branches

– Conditional branching uses boolean values instead

● Short-circuiting

– Not in Decaf!

String Handling

● Arrays of chars vs. encapsulated type

– Former is faster, latter is easier/safer

– C uses the former, Java uses the latter

● Mutable vs. immutable

– Former is more intuitive, latter is (sometimes) faster

– C uses the former, Java uses the latter

● Decaf: immutable string constants only

– No string variables

Array Accesses

● Generalization to multidimensions:
– base + (i_1 * w_1) + (i_2 * w_2) + ... + (i_k * w_k)

● Alternate definition:

– 1d: base + width * (i_1)

– 2d: base + width * (i_1 * n_2 + i_2)

– nd: base + width * ((... ((i_1 * n_2 + i_2) * n_3 + i_3) ...) * n_k + i_k) * width

● Row-major vs. column-major

● In Decaf: row-major one-dimensional global arrays

Struct and Record Types

● How to access member values?

– Static offsets from base of struct/record

● OO adds another level of complexity

– Now classes have methods

– Class instance records and virtual method tables

● In Decaf: no structs or classes

Control Flow

● Introduce program labels

– Named location in the program

– Generated sequentially using static newlabel() call

● Generate goto instructions using templates

– Also called "jumps" or "branches"

– In ILOC: “cbr” instruction

– Templates are composable

Control Flow

if statement: if (E) B1

 rE = << E code >>

 cbr rE → b1, skip

 b1:

 << B1 code >>

 skip:

Control Flow

if statement: if (E) B1 else B2

 rE = << E code >>

 cbr rE → b1, b2

 b1:

 << B1 code >>

 jmp done

 b2:

 << B2 code >>

 done:

Control Flow

while loop: while (E) B

 cond: ; CONTINUE target

 rE = << E code >>

 cbr rE → body, done

 body:

 << B code >>

 jmp cond

 done: ; BREAK target

Control Flow

for loop: for V in E1, E2 B

 rX = << E1 code >>

 rY = << E2 code >>

 rV = rX

 cond:

 cmp_GE rV, rY → rC

 cbr rC → done, body

 body:

 << B code >>

 rV = rV + 1 ; CONTINUE target

 jmp cond

 done: ; BREAK target

NOT CURRENTLY
IN DECAF

Control Flow

switch statement:

 switch (E) {

 case V1: B1

 case V2: B2

 default: BD

 }

 rE = << E code >>

 if rE == V1 goto b1

 if rE == V2 goto b2

 << BD code >>

 jmp end

 b1:

 << B1 code >>

 jmp end

 b2:

 << B2 code >>

 jmp end

 l3:

NOT CURRENTLY
IN DECAF

Control Flow

For sequential values starting with constant (C):

 ("jump table")

 rE = << E code >>

 jmp jt(rE)

 jt: jmp l1

 jmp l2

 (...)

Procedure Calls

● These are harder

– We'll talk about them next week

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

