CS 432 Fall 2016

Mike Lam, Professor

Static Analysis

Compilation

Analysis goal: reject as many incorrect programs as possible at the AST level before attempting code generation

Overview

- Syntax: form of a program
 - Described using regular expressions and context-free grammars
- Semantics: meaning of a program
 - Much more difficult to describe clearly

Aside: Semantic approaches

- Three main approaches:
 - Operational semantics
 - Axiomatic semantics
 - Denotational semantics

Operational Semantics

• Describe a program's effects using a simpler language that is closer to the hardware

```
for (i=0; i<n; i++) {
    m *= i;
}
loop: if i>=n goto done
    m *= i
    i++
    goto loop
done:
```

```
for (e1; e2; e3) {
    e4
    loop: if !e2 goto done
    e4
    e3
    goto loop
    done:
```

Axiomatic Semantics

- Express programs as proof trees
 - Loops can be difficult to handle

Denotational Semantics

- Describes a program's results using functions
 - Must also track system state

```
eval :: (Program, State) → (Value, State)

eval(e1 + e2, S) =

    let (v1, S') = eval(e1, S) in

    let (v2, S'') = eval(e2, S') in

    (v1 + v2, S'')

eval(while e1 do e2, S) =

    let (v, S') = eval(e1, S) in

    if not v then

        (v, S')

    else let (_, S'') = eval(e2, S')

        eval(while e1 do e2, S'')
```

Semantics

- Three main approaches:
 - Operational semantics: programs are actions
 - Axiomatic semantics: programs are proofs
 - Denotational semantics: programs are functions

Static Analysis

- Goal: reject incorrect programs
- Problem: checking semantics is hard!
 - In general, we won't be able to check for full correctness
 - However, some aspects of semantics can be robustly encoded using types and type systems

- A type is an abstract category characterizing a range of data values
 - Base types: integer, character, boolean, floating-point
 - Enumerated types (finite list of constants)
 - Pointer types ("address of X")
 - Array or list types ("list of X")
 - Compound/record types (named collections of other types)
 - Function types: (type1, type2, type3) \rightarrow type4
- Two types are name-equivalent if their names are identical
- Two types are structurally-equivalent if
 - They are the same basic type or
 - They are recursively structurally-equivalent

Type Conversions

- Implicit vs. explicit
 - Implicit conversions are performed automatically by the compiler ("coercions")
 - E.g., double x = 2;
 - Explicit conversions are specified by the programmer ("casts")
 - E.g., int x = (int)1.5;
- Narrowing vs. widening
 - Widening conversions preserve information
 - E.g., int \rightarrow long
 - Narrowing conversions may lose information
 - E.g., float \rightarrow int

Type Systems

- A type system is a set of type rules
 - Rules: valid types, type compatibility, and how values can be used
 - "Strongly typed" if every expression can be assigned an unambiguous type
 - "Statically typed" if all types can be assigned at compile time
 - "Dynamically typed" if some types can only be discovered at runtime
- Benefits of a robust type system
 - Earlier error detection
 - Better documentation
 - Increased modularization

Type Checking

- Type inference is the process of assigning types to expressions
 - This information must be "inferred" if it is not explicit
- Type checking is the process of ensuring that a program has no type-related errors
 - Ensure that operations are supported by a variable's type
 - Ensure that operands are of compatible types
 - This could happen at compile time (for static type systems) or at run time (for dynamic type systems)
 - A type error is usually considered a bug

Type Inference

- Polymorphism: literally "taking many forms"
 - A polymorphic construct supports multiple types
 - Subtype polymorphism: object inheritance
 - Function polymorphism: overloading
 - Parametric polymorphism: generic type identifiers
 - E.g., templates in C++ or generics in Java
 - During type inference, create type variables, and unify type variables with concrete types
 - Some type variables might remain unbound
 - E.g., map : $((a \rightarrow b), [a]) \rightarrow [b]$

Type Checking

- Sound vs. complete type checking
 - A "sound" system has no false positives
 - All errors reported are true errors
 - A "complete" system has no false negatives
 - All true errors are reported
- Most type checking is sound but not complete
 - The lack of type errors does not mean the program is correct
 - However, the presence of a type error generally does mean that the program is NOT correct

Symbols

- A symbol is a single name in a program
 - What type of value is it?
 - If it is a variable:
 - How big is it?
 - Where is it stored?
 - How long must its value be preserved?
 - Who is responsible for allocating, initializing, and de-allocating it?
 - If it is a function:
 - What parameters does it take?
 - What does it return?

Symbol Tables

- A symbol table stores information about symbols during compilation
 - Aggregates information from (potentially) distant parts of code
 - Maps symbol names to symbol information
 - Often implemented using hash tables
 - Usually one symbol table per scope
 - Each table contains a pointer to its parent (next larger scope)
- Supported operations
 - Insert(name, record) add a new symbol to the current table
 - LookUp(name) retrieve information about a symbol

Formal Type Theory

- Type systems expressed formally as a set of type rules
 - Each rule has a name, zero or more premises (below the line) and a conclusion (above the line)
 - Apply rules recursively in specific environments (e.g., symbol tables, marked in rules with ⊢ operator) to form proof trees
 - Curry-Howard correspondence ("proofs as programs")

TInt
$$A \vdash n : int$$
 $X : t \in A$
 $A \vdash x : t$ TVarFun $A, x : t \vdash e : t'$
 $A \vdash \lambda x : t : t : t : t'$ $A \vdash e : t \rightarrow t'$
 $A \vdash e : t : t' $A \vdash e' : t$
 $A \vdash e' : t$ TApp$

Formal Type Theory

		x : t ∈ A	A, x :	:t⊢ e:t'	$A \vdash e: t \rightarrow t'$	$A \vdash e': t$
$A \vdash n: int$		$A \vdash x: t$	$A \vdash \lambda x: t.e: t \rightarrow t'$		$A \vdash e e' : t'$	
TInt		TVar	TFun		ТАрр	
TVar TApp	+: B⊢ -	∈ B	$\frac{\mathbf{x}:}{\mathbf{B}\vdash\mathbf{x}:}$	∈ B TVar		
	B⊦	- + x :	B ⊢ 3 :		— TΔnn	
	TFun	$B \vdash + x 3:$		тдрр		
		A \vdash ($\lambda x:int. + x 3$):			$A \vdash 4:$	TAnn
	- iAhh					

 $A = \{ +: int \rightarrow int \rightarrow int \} \qquad B = A, x: int$

Formal Type Theory

	x : t ∈ A	A, $x : t \vdash e : t'$	$A \vdash e: t \rightarrow t' \qquad A \vdash e': t$	
$A \vdash n: int$	$A \vdash x : t$	$A \vdash \lambda x: t. e: t \rightarrow t'$	$A \vdash e e' : t'$	
TInt	TVar	TFun	ТАрр	

$$\begin{array}{c} \text{TVar} & \frac{+:i \rightarrow i \rightarrow i \in B}{B \vdash +: i \rightarrow i \rightarrow i} & \frac{x: \text{int} \in B}{B \vdash x: \text{int}} \text{ TVar} \\ \hline \text{TApp} & \frac{B \vdash +: i \rightarrow i \rightarrow i}{B \vdash x: \text{int}} & \frac{B \vdash x: \text{int}}{B \vdash x: \text{int}} \text{ TApp} \\ \hline \text{TFun} & \frac{B \vdash +: x: \text{int} \rightarrow \text{int}}{A \vdash (\lambda x: \text{int}.+: x: 3): \text{int} \rightarrow \text{int}} & A \vdash 4: \text{int} \\ \hline \text{A} \vdash (\lambda x: \text{int}.+: x: 3): \text{int} \rightarrow \text{int}} \end{array}$$

 $A = \{ +: int \rightarrow int \rightarrow int \} \qquad B = A, x: int$

Building Symbol Tables (P4)

- Walk the AST, creating linked tables using a stack
 - Create new symbol table for each scope
 - Global symbols in ASTProgram
 - Function local symbols in ASTFunction
 - Block-local symbols in ASTBlock
 - Caveat: every function contains a function-wide block for local vars, so the function level symbol table will ONLY contain the function parameters
 - Add all symbol information
 - Global variables go in ASTProgram table (including arrays)
 - Function symbols go in ASTProgram table
 - Function parameters go in ASTFunction table
 - Local variables go in ASTBlock table

Static Analysis (P4)

- Walk the AST, checking correctness properties
 - Calculate the types of all expressions
 - Recommended: ASTNode.Type getType(ASTExpression expr)
 - Using symbol table lookups
 - May require some type inference
 - Verify all types are correct according to type rules
 - Do this in visit() methods
 - May require calls to getType() or additional lookups
 - Verify other properties of correct Decaf programs
 - Example: break and continue should only occur in while loops
 - Full list on the project website

P4 reminder

- Check your implementation against the reference compiler (decaf-1.0.jar)
 - If the reference compiler rejects a program, you should too (and vice versa for correct programs)
 - Use "--fdump-tables" to print the symbol tables
 - Also, the graphical AST should have the tables now (both in the reference compiler and in your project)