

CS 432
Fall 2016

Mike Lam, Professor

Static Analysis

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"

Current
focus

Analysis goal: reject as many incorrect
programs as possible at the AST level
before attempting code generation

Overview

● Syntax: form of a program

– Described using regular expressions and context-free grammars

● Semantics: meaning of a program

– Much more difficult to describe clearly

Valid ASCII character strings (identified by I/O system)

Valid sequences of Decaf tokens (identified by lexer)

Syntactically-valid Decaf programs (identified by parser)

Semantically-valid Decaf programs (identified by analysis)

Correct Decaf programs (identified by ???)

Aside: Semantic approaches

● Three main approaches:

– Operational semantics

– Axiomatic semantics

– Denotational semantics

Operational Semantics

● Describe a program's effects using a simpler
language that is closer to the hardware

for (i=0; i<n; i++) {
 m *= i;
}

 i=0;
loop: if i>=n goto done
 m *= i
 i++
 goto loop
done:

for (e1; e2; e3) {
 e4
}

 e1
loop: if !e2 goto done
 e4
 e3
 goto loop
done:

Axiomatic Semantics

● Express programs as proof trees

– Loops can be difficult to handle

{P} if e1 then e2 else e3 {Q}

{P ^ e1} e2 {Q} {P ^ ¬e1} e3 {Q}

{x=10} if x > 5 then y := 3 else y := 7 {x=10 ^ y=3}

{x=10 ^ x>5} y:=3 {x=10 ^ y=3}

...

SConditional

SConditional

SAssign

Denotational Semantics

● Describes a program's results using functions

– Must also track system state

eval :: (Program, State) → (Value, State)

eval(e1 + e2, S) =
 let (v1, S') = eval(e1, S) in
 let (v2, S'') = eval(e2, S') in
 (v1 + v2, S'')

eval(while e1 do e2, S) =
 let (v, S') = eval(e1, S) in
 if not v then
 (v, S')
 else let (_, S'') = eval(e2, S')
 eval(while e1 do e2, S'')

Semantics

● Three main approaches:

– Operational semantics: programs are actions

– Axiomatic semantics: programs are proofs

– Denotational semantics: programs are functions

Static Analysis

● Goal: reject incorrect programs

● Problem: checking semantics is hard!

– In general, we won't be able to check for full correctness

– However, some aspects of semantics can be robustly
encoded using types and type systems

Types

● A type is an abstract category characterizing a range of data values

– Base types: integer, character, boolean, floating-point

– Enumerated types (finite list of constants)

– Pointer types (“address of X”)

– Array or list types (“list of X”)

– Compound/record types (named collections of other types)

– Function types: (type1, type2, type3) → type4

● Two types are name-equivalent if their names are identical

● Two types are structurally-equivalent if

– They are the same basic type or

– They are recursively structurally-equivalent

Type Conversions

● Implicit vs. explicit

– Implicit conversions are performed automatically by the
compiler (“coercions”)

● E.g., double x = 2;

– Explicit conversions are specified by the programmer (“casts”)
● E.g., int x = (int)1.5;

● Narrowing vs. widening

– Widening conversions preserve information
● E.g., int → long

– Narrowing conversions may lose information
● E.g., float → int

Type Systems

● A type system is a set of type rules

– Rules: valid types, type compatibility, and how values can be used

– “Strongly typed” if every expression can be assigned an
unambiguous type

– “Statically typed” if all types can be assigned at compile time

– “Dynamically typed” if some types can only be discovered at
runtime

● Benefits of a robust type system

– Earlier error detection

– Better documentation

– Increased modularization

Type Checking

● Type inference is the process of assigning types to
expressions

– This information must be “inferred” if it is not explicit

● Type checking is the process of ensuring that a program
has no type-related errors

– Ensure that operations are supported by a variable's type

– Ensure that operands are of compatible types

– This could happen at compile time (for static type systems) or
at run time (for dynamic type systems)

– A type error is usually considered a bug

Type Inference

● Polymorphism: literally “taking many forms”

– A polymorphic construct supports multiple types

– Subtype polymorphism: object inheritance

– Function polymorphism: overloading

– Parametric polymorphism: generic type identifiers
● E.g., templates in C++ or generics in Java

– During type inference, create type variables, and unify type
variables with concrete types

● Some type variables might remain unbound
● E.g., map : ((a → b), [a]) → [b]

Type Checking

● Sound vs. complete type checking

– A “sound” system has no false positives
● All errors reported are true errors

– A “complete” system has no false negatives
● All true errors are reported

● Most type checking is sound but not complete

– The lack of type errors does not mean the program is correct

– However, the presence of a type error generally does mean
that the program is NOT correct

Symbols

● A symbol is a single name in a program

– What type of value is it?

– If it is a variable:
● How big is it?
● Where is it stored?
● How long must its value be preserved?
● Who is responsible for allocating, initializing, and de-allocating it?

– If it is a function:
● What parameters does it take?
● What does it return?

Symbol Tables

● A symbol table stores information about symbols during
compilation

– Aggregates information from (potentially) distant parts of code

– Maps symbol names to symbol information

– Often implemented using hash tables

– Usually one symbol table per scope
● Each table contains a pointer to its parent (next larger scope)

● Supported operations

– Insert(name, record) – add a new symbol to the current table

– LookUp(name) – retrieve information about a symbol

Formal Type Theory

● Type systems expressed formally as a set of type rules

– Each rule has a name, zero or more premises (below the line)
and a conclusion (above the line)

– Apply rules recursively in specific environments (e.g., symbol
tables, marked in rules with ⊢ operator) to form proof trees

– Curry-Howard correspondence (“proofs as programs”)

A ⊢ n : int A ⊢ x : t

x : t ∊ A

A ⊢ λx:t.e : t → t'

A, x : t ⊢ e : t'

A ⊢ e e' : t'

A ⊢ e : t → t' A ⊢ e' : t

TInt

TFun

TVar

TApp

Formal Type Theory

A ⊢ (λx:int.+ x 3) 4 :

A = { + : int → int → int }

A ⊢ (λx:int.+ x 3) : A ⊢ 4 :

B ⊢ + x 3 :

B ⊢ 3 :

B ⊢ + :

B ⊢ + x :

B ⊢ x :

B = A, x : int

TApp

TApp

TApp

x : ∊ B
TVar

TFun

+ : ∊ BTVar

A ⊢ n : int A ⊢ x : t

x : t ∊ A

A ⊢ λx:t.e : t → t'

A, x : t ⊢ e : t'

A ⊢ e e' : t'

A ⊢ e : t → t' A ⊢ e' : t

TInt TFunTVar TApp

Formal Type Theory

A ⊢ (λx:int.+ x 3) 4 : int

A = { + : int → int → int }

A ⊢ (λx:int.+ x 3) : int → int A ⊢ 4 : int

B ⊢ + x 3 : int

B ⊢ 3 : int

B ⊢ + : i→i→i

B ⊢ + x : int → int

B ⊢ x : int

B = A, x : int

TApp

TApp

TApp

x : int ∊ B
TVar

TFun

+ : i→i→i ∊ BTVar

A ⊢ n : int A ⊢ x : t

x : t ∊ A

A ⊢ λx:t.e : t → t'

A, x : t ⊢ e : t'

A ⊢ e e' : t'

A ⊢ e : t → t' A ⊢ e' : t

TInt TFunTVar TApp

Building Symbol Tables (P4)

● Walk the AST, creating linked tables using a stack

– Create new symbol table for each scope
● Global symbols in ASTProgram
● Function local symbols in ASTFunction
● Block-local symbols in ASTBlock
● Caveat: every function contains a function-wide block for local vars,

so the function level symbol table will ONLY contain the function
parameters

– Add all symbol information
● Global variables go in ASTProgram table (including arrays)
● Function symbols go in ASTProgram table
● Function parameters go in ASTFunction table
● Local variables go in ASTBlock table

Static Analysis (P4)

● Walk the AST, checking correctness properties

– Calculate the types of all expressions
● Recommended: ASTNode.Type getType(ASTExpression expr)

● Using symbol table lookups
● May require some type inference

– Verify all types are correct according to type rules
● Do this in visit() methods

● May require calls to getType() or additional lookups

– Verify other properties of correct Decaf programs
● Example: break and continue should only occur in while loops
● Full list on the project website

P4 reminder

● Check your implementation against the reference
compiler (decaf-1.0.jar)

– If the reference compiler rejects a program, you should too
(and vice versa for correct programs)

– Use “--fdump-tables” to print the symbol tables

– Also, the graphical AST should have the tables now (both
in the reference compiler and in your project)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

