

CS 432
Fall 2015

Mike Lam, Professor

Top-Down (LL) Parsing

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

"Front end"

"Back end"Current
focus

Segue

● Recognize regular languages with finite automata

– Described by regular expressions

– Rule-based transitions, no memory required

● Recognize context-free languages with pushdown automata

– Described by context-free grammars

– Rule-based transitions, MEMORY REQUIRED
● Add a stack!

Segue

KEY OBSERVATION: Allowing the translator to use memory to track parse
state information enables a wider range of automated machine translation.

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

Most useful
for PL

Overview

● Two general parsing approaches

– Top-down: begin with start symbol (root of parse tree), and
gradually expand non-terminals

– Bottom-up: begin with terminals (leaves of parse tree), and
gradually connect using non-terminals

A

V E

EEa

V V

+

=

b c

Top-down Bottom-up

Top-Down Parsing

root = createNode(S)
focus = root
push(null)
token = nextToken()

loop:
if (focus is non-terminal):

B = chooseRuleAndExpand(focus)
for each b in B.reverse():

focus.addChild(createNode(b))
push(b)

focus = pop()

else if (token == focus):
token = nextToken()
focus = pop()

else if (token == EOF and focus == null):
return root

else:
exit(ERROR)

A

V E

EEa

V V

+

=

b c

A → V = E
V → a | b | c
E → E + E
 | V

Recursive descent parsing

● Idea: use the system stack rather than an explicit stack

– One function for each non-terminal

– Encode productions with function calls and token checks

– Use recursion to track current “state” of the parse

– Easiest kind of parser to write manually

A → ‘if’ C ‘then’ S
 | ‘goto’ L

parseA(tokens):
 node = new A()
 next = tokens.next()
 if next == ”if”:
 node.type = IFTHEN
 node.cond = parseC()
 matchToken(“then”)
 node.stmt = parseS()
 else if next == “goto”
 node.type = GOTO
 node.lbl = parseL()
 else
 error (“expected ‘if’ or ‘goto’”)
 return node

Top-Down Parsing

● Main issue: choosing which rule to use

– With full lookahead, it would be relatively easy
● This would be very inefficient

– Can we do it with a single lookahead?
● That would be much faster

LL(1) Parsing

● LL(1) grammars

– Left-to-right scan of the input string

– Leftmost derivation

– 1 symbol of lookahead

– Highly restricted form of context-free grammar
● No left recursion
● No backtracking

Context-Free
Hierarchy

Regular

LL(1)

LR(1)

Context-Free

LL(1) Grammars

● We can convert many practical grammars to be LL(1)

– Must remove left recursion

– Must remove productions with common prefixes (i.e., left
factoring)

A → A α
 | β

A → α β
1

 | α β
2

Grammar with left recursion Grammar with common prefixes

Eliminating Left Recursion

● Left recursion: A → A α | β

– Often a result of left associativity (e.g., expression
grammar)

– Leads to infinite looping/recursion in an LL(1) parser (try it!)

– To fix, unroll the recursion into a new non-terminal

A → A α
 | β

A → β A'

A' → α A'
 | ε

Left Factoring

● Backtracking required: A → α β1 | α β2

– Leads to ambiguous rule choice in LL(1) parser
● One lookahead (α) is not enough to pick a rule

– To fix, factor the choices into a new non-terminal

A → α β
1

 | α β
2

A → α A'

A' → β1

 | β2

LL(1) Parsing

● LL(1) grammars are a subset of context-free grammars

– Often, non-LL(1) grammars can be transformed into LL(1)
grammars by left-factoring and eliminating left recursion

● LL(1) grammars can be parsed by recursive descent

– Mutually-recursive procedures, one for each non-terminal

– Can be hand-coded relatively easily

– Implementation is directly guided by the grammar

● LL(1) parsers can also be auto-generated

– Similar to auto-generated lexers

– Tables created by a parser generator using FIRST and FOLLOW
helper sets

LL(1) Parsing

● FIRST(α)

– Set of terminals (and ε) that can appear at the start of a
sentence derived from α (can be a terminal or non-terminal)

● FOLLOW(A) set

– Set of terminals (and $) that can occur immediately after non-
terminal A in a sentential form

● FIRST+(A → β)

– If ε is not in FIRST(β)

● FIRST+(A) = FIRST(β)
– Otherwise

● FIRST+(A) = FIRST(β) ∪ FOLLOW(A)

Calculating FIRST(α)

● Rule 1: α is a terminal a

– FIRST(a) = { a }

● Rule 2: α is a non-terminal X

– Examine all productions X → Y1 Y2 ... Yk

● add FIRST(Y1) if not Y1 →* ε

● add FIRST(Yi) if Y1 ... Yj →* ε, where j = i-1 (skip disappearing symbols)

– FIRST(X) is union of all of the above

● Rule 3: α is a non-terminal X and X → ε

– FIRST(X) includes ε

Calculating FOLLOW(B)

● Rule 1: FOLLOW(S) includes EOF / $

– Where S is the start symbol

● Rule 2: for every production A → α B β

– FOLLOW(B) includes everything in FIRST(β) except ε

● Rule 3: if A → α B or (A → α B β and FIRST(β) contains ε)

– FOLLOW(B) includes everything in FOLLOW(A)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

