CS 432
Fall 2015

Mike Lam, Professor

Top-Down (LL) Parsing

Source code

Current

focus Back end
------------------------ A
- Tokens Syntax tree ™. Machine code

oooo :
Oooooo :
gas = % = -
ooono ;
Oooooo .’
ooo

... Parsing __..~"Code Generation

------- - & Optimization
~

"Front end"

I Segue

 Recognize regular languages with finite automata
— Described by regular expressions
— Rule-based transitions, no memory required
 Recognize context-free languages with pushdown automata

— Described by context-free grammars

— Rule-based transitions, MEMORY REQUIRED
* Add a stack!

I Segue

KEY OBSERVATION: Allowing the translator to use memory to track parse
state information enables a wider range of automated machine translation.

Chomsky Hierarchy of Languages

Recursively enumerable

Context-sensitive

Context-free

." Most useful

Regular .- for PL
Grammar Languages Automaton Production rules {constraints)
Type-0 Recursively enumerable | Turing machine a —+ B (no restrictions)
Type-1 Context-sensitive Linear-bounded non-deterministic Turing machine | a 48 — a8
Type-2 Context-free MNon-deterministic pushdown automaton A=y
A—a
Type-3 Regular Finite state automaton and

A—aB

I Overview

 Two general parsing approaches

— Top-down: begin with start symbol (root of parse tree), and
gradually expand non-terminals

— Bottom-up: begin with terminals (leaves of parse tree), and
gradually connect using non-terminals

A
V = E
a E + E
Top-down Bottom-up
V V

I Top-Down Parsing

root = createNode(S)
focus = root
push(null)

token = nextToken()

loop:
if (focus is non-terminal):
B = chooseRuleAndExpand(focus)
for each b in B.reverse():
focus.addChild(createNode(b))
push(b)
focus = pop()

else if (token == focus):
token = nextToken()
focus = pop()

else if (token == EOF and focus == null):

return root

else:
exit (ERROR)

A- V =E
Vo al|b|oc
E - E + E
| V
A
\Y; = E
a E +
V
b

I Recursive descent parsing

e |dea: use the system stack rather than an explicit stack

— One function for each non-terminal

— Encode productions with function calls and token checks
— Use recursion to track current “state” of the parse

— Easiest kind of parser to write manually

parseA(tokens):
node = new A()
next = tokens.next()

if next == "if":
node.type = IFTHEN
A S if' C'then’ S node.cond = parseC()
| ‘goto’ L ‘ matchToken(“then™)

node.stmt = parseS()
else if next == “goto”

node.type = GOTO

node.lbl = parsel()
else

error (“expected ‘if’ or ‘goto’”)
return node

I Top-Down Parsing

e Main issue: choosing which rule to use

— With full lookahead, it would be relatively easy
e This would be very inefficient
— Can we do it with a single lookahead?

e That would be much faster

I LL(1) Parsing

e LL(1) grammars

Left-to-right scan of the input string

Leftmost derivation

1 symbol of lookahead

Highly restricted form of context-free grammar

 No left recursion
* No backtracking

Context-Free
Hierarchy

Context-Free

LR(1)

LL(1)

Regular

I LL(1) Grammars

* \We can convert many practical grammars to be LL(1)

— Must remove left recursion

— Must remove productions with common prefixes (i.e., left
factoring)

a A—)GBl

A - A
| B | o B,

Grammar with left recursion Grammar with common prefixes

I Eliminating Left Recursion

e Leftrecursion: A - Aa |

— Often a result of left associativity (e.g., expression
grammar)

— Leads to infinite looping/recursion in an LL(1) parser (try it!)
— To fix, unroll the recursion into a new non-terminal

A - o
|

A
B

I Left Factoring

e Backtracking required: A - a3, | a3,

— Leads to ambiguous rule choice in LL(1) parser
 One lookahead (o) is not enough to pick a rule
- To fix, factor the choices into a new non-terminal

A -
|

Q Q

w0 W
[N

>
J
P

I LL(1) Parsing

e LL(1) grammars are a subset of context-free grammars

— Often, non-LL(1) grammars can be transformed into LL(1)
grammars by left-factoring and eliminating left recursion

 LL(1) grammars can be parsed by recursive descent
— Mutually-recursive procedures, one for each non-terminal
— Can be hand-coded relatively easily
— Implementation is directly guided by the grammar

e LL(1) parsers can also be auto-generated

— Similar to auto-generated lexers

— Tables created by a parser generator using FIRST and FOLLOW
helper sets

I LL(1) Parsing

» FIRST(q)

— Set of terminals (and €) that can appear at the start of a
sentence derived from a (can be a terminal or non-terminal)

e FOLLOW(A) set

— Set of terminals (and $) that can occur immediately after non-
terminal A in a sentential form

* FIRST+A - B)

— If € is notin FIRST(PB)

e FIRST+(A) = FIRST(p)
— Otherwise

e FIRST+(A) = FIRST() u FOLLOW(A)

I Calculating FIRST(a)

e Rule 1: ais aterminal a
- FIRST(a)={a}

e Rule 2: ais a non-terminal X

— Examine all productions X - Y, Y, ... Y,

e add FIRST(Y,)ifnotY, -*¢
e add FIRST(Y) ifY,...Y;, -*¢€ where]=I-1 (skip disappearing symbols)
— FIRST(X) is union of all of the above

e Rule 3: ais anon-terminal Xand X - ¢
— FIRST(X) includes ¢

ll calculating FoLLOW(B)

e Rule 1: FOLLOW(S) includes EOF / $
- Where S Is the start symbol

e Rule 2: for every production A -~ a B 3
- FOLLOW(B) includes everything in FIRST([3) except €

e Rule 3:ifA -~ aBor (A - aBBandFIRST(B) contains €)
— FOLLOW(B) includes everything in FOLLOW(A)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

