

CS 432
Fall 2016

Mike Lam, Professor

Finite Automata Conversions
and Lexing

Finite Automata

● Finite automata transitions:

Regex NFA DFA Lexer

Thompson's
construction

Subset
construction

Lexer
generators

Hopcroft's
algorithm

Kleene's construction

Brzozowski's algorithm

(dashed lines indicate transitions to a minimized DFA)

Finite Automata

● RE to NFA: Thompson's construction

– Core insight: inductively build up NFA using “templates”

● NFA to DFA: Subset construction

– Core insight: DFA node = subset of NFA nodes

– Core concept: use null closure to calculate subsets

● DFA minimization: Hopcroft’s algorithm

– Core insight: create partitions, then keep splitting

Thompson's: Base case

Thompson's: Concatenation

Thompson's: Concatenation

Thompson's: Union

Thompson's: Union

Thompson's: Closure

Thompson's: Closure

ε

Subset construction

● Basic idea: create DFA incrementally

– Each DFA state represents a subset of NFA states

– Use null closure operation to “collapse” epsilon transitions

– Null closure: all states reachable via epsilon transitions
● i.e., where can we go “for free?”

– Simulates running all possible paths through the NFA

Null closure of A = { A }
Null closure of B = { B, D }
Null closure of C = { C, D }
Null closure of D = { D }

Subset Example

Subset Example

{A}

{B,D}a

b
{C,D}

Subset Example

Subset Example

{A,E}

{B,D,E}
a

{C,D}
b

b {E}

a

b

a

Hopcroft’s DFA Minimization

{A}

{B,D}a

b
{C,D}

● Split into two partitions (final & non-final)

● Keep splitting a partition while there are states with differing behaviors

– Two states transition to differing partitions on the same symbol

– Or one state transitions on a symbol and another doesn’t

● When done, collapse partitions to a single state

Same behavior; collapse!

{A}

{B,C,D}a,b

Hopcroft’s DFA Minimization

{A}

{B,D}a

b
{C,D}

Differing behavior
on ‘a’; split!

a

{A}

{B,D}a

b
{C,D}

a

● Split into two partitions (final & non-final)

● Keep splitting a partition while there are states with differing behaviors

– Two states transition to differing partitions on the same symbol

– Or one state transitions on a symbol and another doesn’t

● When done, collapse partitions to a single state

Discussion Questions

● How long does it take to...

– Build an NFA?

– Run an NFA?

– Build a DFA?

– Run a DFA?

Efficiency Concerns

● Thompson's construction

– At most two new states and four transitions per regex character

– Thus, a linear space increase with respect to the # of regex characters

– Constant # of operations per increase means linear time as well

● NFA execution

– Proportional to both NFA size and input string size

– Must track multiple simultaneous “current” states

● Subset construction

– Potential exponential state space explosion

– A n-state NFA could require up to 2n DFA states

– However, this rarely happens in practice

● DFAs execution

– Proportional to input string size only (only track a single “current” state)

NFA/DFA complexity

● NFAs build quicker (linear) but run slower

– Better if you will only run the FA a few times

● DFAs build slower (worst case exponential) but run faster

– Better if you will run the FA many times

NFA DFA

Build time O(m) O(2m)

Run time O(m×n) O(n)

m = length of regular expression
n = length of input string

Lexers

● Auto-generated

– Table-driven: generic scanner, auto-generated tables

– Direct-coded: hard-code the tables into the scanner

– Common tools: lex/flex and similar

● Hand-coded

– Better I/O performance (i.e., buffering)

– More efficient interfacing w/ other phases

Handling Keywords

● Issue: keywords are identifiers

● Option 1: Embed into NFA/DFA

– Separate regex for keywords

– Easier/faster for generated scanners

● Option 2: Use lookup table

– Scan as identifier then check for a keyword

– Easier for hand-coded scanners

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

